1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
//! Map structure contains information about tiles and other elements on the map.
//! 
//! Map is created with generators and then can by modified with MapModifiers.
//! 
//! This structure is not intented to be your map in the game (But can be used as one). 
//! Rather the information from this map will be copied to the structures required by
//! specific game.
//! 

use std::fmt;
use super::geometry::{Point, Rect, usize_abs};


#[derive(PartialEq, Copy, Clone, Debug, Eq, Hash)]
pub enum TileType {
    Wall, Floor
}

#[derive(PartialEq, Copy, Clone)]
pub enum Symmetry { None, Horizontal, Vertical, Both }


/// Map data
#[derive(Default, Clone)]
pub struct Map {
    pub tiles : Vec<TileType>,
    pub width : usize,
    pub height : usize,
    pub starting_point: Option<Point>,
    pub exit_point: Option<Point>,
    pub rooms: Vec<Rect>,
    pub corridors: Vec<Vec<Point>>,
}

impl Map {

    /// Generates an empty map, consisting entirely of solid walls
    pub fn new(width: usize, height: usize) -> Map {
        let map_tile_count = width*height;
        Map{
            tiles : vec![TileType::Wall; map_tile_count],
            width,
            height,
            starting_point: None,
            exit_point: None,
            rooms: Vec::new(),
            corridors: Vec::new()
        }
    }

    /// Create map from given string
    pub fn from_string(map_string: &str) -> Map {
        let lines: Vec<&str> = map_string.split("\n")
            .map(|l| l.trim())
            .filter(|l| l.len() > 0)
            .collect();
        let cols = lines.iter().map(|l| l.len()).max().get_or_insert(1).to_owned();
        let rows = lines.len();
        let mut map = Map::new(cols, rows);

        for i in 0..rows {
            let line = lines[i].as_bytes();
            for j in 0..line.len() {
                if line[j] as char == ' ' {
                    map.set_tile(j, i, TileType::Floor);
                }
            }
        }
        map
    }

    /// Get TileType at the given location
    pub fn at(&self, x: usize, y: usize) -> TileType {
        if x >= self.width || y >= self.height {
            TileType::Wall
        } else {
            let idx = (y as usize) * self.width + (x as usize);
            self.tiles[idx]
        }
    }

    /// Get available exists from the given tile
    pub fn get_available_exits(&self, x: usize, y: usize) -> Vec<(usize, usize, f32)> {
        let mut exits = Vec::new();

        // Cardinal directions
        if self.is_exit_valid(x-1, y) { exits.push((x-1, y, 1.0)) };
        if self.is_exit_valid(x+1, y) { exits.push((x+1, y, 1.0)) };
        if self.is_exit_valid(x, y-1) { exits.push((x, y-1, 1.0)) };
        if self.is_exit_valid(x, y+1) { exits.push((x, y+1, 1.0)) };

        // Diagonals
        if self.is_exit_valid(x-1, y-1) { exits.push((x-1, y-1, 1.45)); }
        if self.is_exit_valid(x+1, y-1) { exits.push((x+1, y-1, 1.45)); }
        if self.is_exit_valid(x-1, y+1) { exits.push((x-1, y+1, 1.45)); }
        if self.is_exit_valid(x+1, y+1) { exits.push((x+1, y+1, 1.45)); }

        exits
    }    
 
    // Check if given tile can be accessed
    fn is_exit_valid(&self, x:usize, y:usize) -> bool {
        self.at(x, y) == TileType::Floor
    }

    /// Modify tile at the given location
    pub fn set_tile(&mut self, x: usize, y: usize, tile: TileType) {
        if x < self.width && y < self.height {
            let idx = (y as usize) * self.width + (x as usize);
            self.tiles[idx] = tile;
        }
    }
    
    /// Create room on the map at given location
    /// Room is created by setting all tiles in the room to the Floor
    pub fn add_room(&mut self, rect: Rect) {
        for x in rect.x1..rect.x2 {
            for y in rect.y1..rect.y2 {
                self.set_tile(x as usize, y as usize, TileType::Floor);
            }
        }
        self.rooms.push(rect);
    }

    pub fn add_corridor(&mut self, from: Point, to:Point) {
        let mut corridor = Vec::new();
        let mut x = from.x;
        let mut y = from.y;

        while x != to.x || y != to.y {
            if x < to.x {
                x += 1;
            } else if x > to.x {
                x -= 1;
            } else if y < to.y {
                y += 1;
            } else if y > to.y {
                y -= 1;
            }

            if self.at(x, y) != TileType::Floor {
                corridor.push(Point::new(x, y));
                self.set_tile(x, y, TileType::Floor);
            }
        }
    }

    pub fn paint(&mut self, mode: Symmetry, brush_size: usize, x: usize, y: usize) {
        match mode {
            Symmetry::None => self.apply_paint(brush_size, x, y),
            Symmetry::Horizontal => {
                let center_x = self.width / 2;
                if x == center_x {
                    self.apply_paint(brush_size, x, y);
                } else {
                    let dist_x = usize_abs(center_x, x);
                    self.apply_paint(brush_size, center_x + dist_x, y);
                    self.apply_paint(brush_size, center_x - dist_x, y);
                }
            }
            Symmetry::Vertical => {
                let center_y = self.height / 2;
                if y == center_y {
                    self.apply_paint(brush_size, x, y);
                } else {
                    let dist_y = usize_abs(center_y, y);
                    self.apply_paint(brush_size, x, center_y + dist_y);
                    self.apply_paint(brush_size, x, center_y - dist_y);
                }
            }
            Symmetry::Both => {
                let center_x = self.width / 2;
                let center_y = self.height / 2;
                if x == center_x && y == center_y {
                    self.apply_paint(brush_size, x, y);
                } else {
                    let dist_x = usize_abs(center_x, x);
                    self.apply_paint(brush_size, center_x + dist_x, y);
                    self.apply_paint(brush_size, center_x - dist_x, y);
                    let dist_y = usize_abs(center_y, y);
                    self.apply_paint(brush_size, x, center_y + dist_y);
                    self.apply_paint(brush_size, x, center_y - dist_y);
                }
            }
        }
    }

    fn apply_paint(&mut self, brush_size: usize, x: usize, y: usize) {
        match brush_size {
            1 => {
                self.set_tile(x, y, TileType::Floor);
            }
            _ => {
                let half_brush_size = brush_size / 2;
                for brush_y in y-half_brush_size .. y+half_brush_size {
                    for brush_x in x-half_brush_size .. x+half_brush_size {
                        if brush_x > 1 && brush_x < self.width-1 && brush_y > 1 && brush_y < self.height-1 {
                            self.set_tile(brush_x, brush_y, TileType::Floor);
                        }
                    }
                }
            }
        }
    }
}

impl fmt::Display for Map {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for y in 0..self.height {
            let bytes: Vec<u8> = (0..self.width)
                .map(|x| if self.at(x, y) == TileType::Wall {'#'} else {' '} as u8)
                .collect();
            let line = String::from_utf8(bytes).expect("Can't convert map to string");
            let _ = write!(f, "{}\n", line);
        }
        Ok(())
    }
}

/// ------------------------------------------------------------------------------------------------
/// Module unit tests
/// ------------------------------------------------------------------------------------------------
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_new_map() {
        let map = Map::new(10, 10);
        for i in 0..10 {
            for j in 0..10 {
                assert_eq!(map.at(i, j), TileType::Wall);
            }
        }
    }

    #[test]
    fn test_from_string() {
        let map_str = "
        ##########
        #        #
        ##########
        ";
        let map = Map::from_string(map_str);

        assert_eq!(map.width, 10);
        assert_eq!(map.height, 3);
        for i in 0..10 {
            assert_eq!(map.at(i, 0), TileType::Wall);
            assert_eq!(map.at(i, 2), TileType::Wall);
            if i == 0 || i == 9 {
                assert_eq!(map.at(i, 1), TileType::Wall);
            } else {
                assert_eq!(map.at(i, 1), TileType::Floor);
            }
        }
    }

    #[test]
    fn test_exists() {
        let map_str = "
        ##########
        #        #
        #        #
        ##########
        ";
        let map = Map::from_string(map_str);
        let exists = map.get_available_exits(1, 1);
        let expected_exists = vec![(2, 1, 1.0), (1, 2, 1.0), (2, 2, 1.45)];
        assert_eq!(exists, expected_exists);
    }

        #[test]
    fn test_create_room() {
        let mut map = Map::new(5, 5);
        map.add_room(Rect::new(1, 1, 3, 3));
        for x in 0..map.width {
            for y in 0..map.height {
                if x == 0 || y == 0 || x == 4 || y == 4 {
                    assert_eq!(map.at(x, y), TileType::Wall);
                } else {
                    assert_eq!(map.at(x, y), TileType::Floor);
                }
            }
        }
    }

    #[test]
    fn test_add_corridor() {
        let map_str = "
        ##########
        #    #   #
        ##########
        ";
        let mut map = Map::from_string(map_str);
        let expected_map_str = "
        ##########
        #        #
        ##########
        ";
        let expected_map = Map::from_string(expected_map_str);

        map.add_corridor(Point::new(1, 1), Point::new(8, 1));

        assert_eq!(map.tiles, expected_map.tiles);
    }
}