1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::Rational;
use core::cmp::Ordering;
use core::ops::Neg;
use malachite_base::comparison::traits::{Max, Min};
use malachite_base::named::Named;
use malachite_base::num::arithmetic::traits::{DivRound, DivisibleByPowerOf2};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::conversion::traits::{ConvertibleFrom, RoundingFrom, WrappingFrom};
use malachite_base::num::logic::traits::SignificantBits;
use malachite_base::rounding_modes::RoundingMode;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct UnsignedFromRationalError;

fn try_from_unsigned<'a, T: TryFrom<&'a Natural>>(
    x: &'a Rational,
) -> Result<T, UnsignedFromRationalError> {
    if x.sign && x.denominator == 1u32 {
        T::try_from(&x.numerator).map_err(|_| UnsignedFromRationalError)
    } else {
        Err(UnsignedFromRationalError)
    }
}

fn convertible_from_unsigned<T: for<'a> ConvertibleFrom<&'a Natural>>(x: &Rational) -> bool {
    x.sign && x.denominator == 1u32 && T::convertible_from(&x.numerator)
}

#[allow(clippy::let_and_return)] // n doesn't live long enough for a direct return
fn rounding_from_unsigned<'a, T: for<'b> TryFrom<&'b Natural> + Max + Named + Zero>(
    x: &'a Rational,
    rm: RoundingMode,
) -> (T, Ordering) {
    if x.sign {
        let (n, o) = (&x.numerator).div_round(&x.denominator, rm);
        let out = if let Ok(q) = T::try_from(&n) {
            (q, o)
        } else if rm == RoundingMode::Down
            || rm == RoundingMode::Floor
            || rm == RoundingMode::Nearest
        {
            (T::MAX, Ordering::Less)
        } else {
            panic!(
                "Rational is too large to round to {} using RoundingMode {}",
                rm,
                T::NAME
            );
        };
        out
    } else if rm == RoundingMode::Down || rm == RoundingMode::Ceiling || rm == RoundingMode::Nearest
    {
        (T::ZERO, Ordering::Greater)
    } else {
        panic!(
            "Cannot round negative Rational to {} using RoundingMode {}",
            rm,
            T::NAME
        );
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct SignedFromRationalError;

#[allow(clippy::trait_duplication_in_bounds)]
fn try_from_signed<
    'a,
    U: WrappingFrom<&'a Natural>,
    S: Neg<Output = S> + PrimitiveInt + WrappingFrom<U> + WrappingFrom<&'a Natural>,
>(
    x: &'a Rational,
) -> Result<S, SignedFromRationalError> {
    if x.denominator != 1u32 {
        return Err(SignedFromRationalError);
    }
    match *x {
        Rational {
            sign: true,
            ref numerator,
            ..
        } => {
            if numerator.significant_bits() < S::WIDTH {
                Ok(S::wrapping_from(numerator))
            } else {
                Err(SignedFromRationalError)
            }
        }
        Rational {
            sign: false,
            ref numerator,
            ..
        } => {
            let significant_bits = numerator.significant_bits();
            if significant_bits < S::WIDTH
                || significant_bits == S::WIDTH && numerator.divisible_by_power_of_2(S::WIDTH - 1)
            {
                Ok(S::wrapping_from(U::wrapping_from(numerator)).wrapping_neg())
            } else {
                Err(SignedFromRationalError)
            }
        }
    }
}

fn convertible_from_signed<T: PrimitiveInt>(x: &Rational) -> bool {
    if x.denominator != 1u32 {
        return false;
    }
    match *x {
        Rational {
            sign: true,
            ref numerator,
            ..
        } => numerator.significant_bits() < T::WIDTH,
        Rational {
            sign: false,
            ref numerator,
            ..
        } => {
            let significant_bits = numerator.significant_bits();
            significant_bits < T::WIDTH
                || significant_bits == T::WIDTH && numerator.divisible_by_power_of_2(T::WIDTH - 1)
        }
    }
}

fn rounding_from_signed<'a, T: Max + Min + Named + for<'b> WrappingFrom<&'b Integer>>(
    x: &'a Rational,
    rm: RoundingMode,
) -> (T, Ordering)
where
    Integer: PartialOrd<T>,
{
    let (i, o) = Integer::rounding_from(x, rm);
    if i > T::MAX {
        if rm == RoundingMode::Down || rm == RoundingMode::Floor || rm == RoundingMode::Nearest {
            (T::MAX, Ordering::Less)
        } else {
            panic!(
                "Rational is too large to round to {} using RoundingMode {}",
                rm,
                T::NAME
            );
        }
    } else if i < T::MIN {
        if rm == RoundingMode::Down || rm == RoundingMode::Ceiling || rm == RoundingMode::Nearest {
            (T::MIN, Ordering::Greater)
        } else {
            panic!(
                "Rational is too small to round to {} using RoundingMode {}",
                rm,
                T::NAME
            );
        }
    } else {
        (T::wrapping_from(&i), o)
    }
}

macro_rules! impl_from_unsigned {
    ($u: ident) => {
        impl<'a> TryFrom<&'a Rational> for $u {
            type Error = UnsignedFromRationalError;

            /// Converts a [`Rational`] to an unsigned primitive integer, returning an error if the
            /// [`Rational`] cannot be represented.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::primitive_int_from_rational#try_from).
            #[inline]
            fn try_from(value: &Rational) -> Result<$u, UnsignedFromRationalError> {
                try_from_unsigned(value)
            }
        }

        impl<'a> ConvertibleFrom<&'a Rational> for $u {
            /// Determines whether a [`Rational`] can be converted to an unsigned primitive integer.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::primitive_int_from_rational#convertible_from).
            #[inline]
            fn convertible_from(value: &Rational) -> bool {
                convertible_from_unsigned::<$u>(value)
            }
        }

        impl<'a> RoundingFrom<&'a Rational> for $u {
            /// Converts a [`Rational`] to an unsigned integer, using a specified [`RoundingMode`].
            ///
            /// If the [`Rational`] is negative, then it will be rounded to zero when `rm` is
            /// `Ceiling`, `Down`, or `Nearest`. Otherwise, this function will panic.
            ///
            /// If the [`Rational`] is larger than the maximum value of the unsigned type, then it
            /// will be rounded to the maximum value when `rm` is `Floor`, `Down`, or `Nearest`.
            /// Otherwise, this function will panic.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n \log n \log\log n)$
            ///
            /// $M(n) = O(n \log n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `value.significant_bits()`.
            ///
            /// # Panics
            /// Panics if the [`Rational`] is not an integer and `rm` is `Exact`, if the
            /// [`Rational`] is less than zero and `rm` is not `Down`, `Ceiling`, or `Nearest`, or
            /// if the [`Rational`] is greater than `T::MAX` and `rm` is not `Down`, `Floor`, or
            /// `Nearest`.
            ///
            /// # Examples
            /// See [here](super::primitive_int_from_rational#rounding_from).
            #[inline]
            fn rounding_from(value: &Rational, rm: RoundingMode) -> ($u, Ordering) {
                rounding_from_unsigned(value, rm)
            }
        }
    };
}
apply_to_unsigneds!(impl_from_unsigned);

macro_rules! impl_from_signed {
    ($u: ident, $s: ident) => {
        impl<'a> TryFrom<&'a Rational> for $s {
            type Error = SignedFromRationalError;

            /// Converts a [`Rational`] to a signed primitive integer, returning an error if the
            /// [`Rational`] cannot be represented.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::primitive_int_from_rational#try_from).
            #[inline]
            fn try_from(value: &Rational) -> Result<$s, SignedFromRationalError> {
                try_from_signed::<$u, $s>(value)
            }
        }

        impl<'a> ConvertibleFrom<&'a Rational> for $s {
            /// Determines whether a [`Rational`] can be converted to a signed primitive integer.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::primitive_int_from_rational#convertible_from).
            #[inline]
            fn convertible_from(value: &Rational) -> bool {
                convertible_from_signed::<$s>(value)
            }
        }

        impl<'a> RoundingFrom<&'a Rational> for $s {
            /// Converts a [`Rational`] to a signed integer, using a specified [`RoundingMode`].
            ///
            /// If the [`Rational`] is smaller than the minimum value of the unsigned type, then it
            /// will be rounded to the minimum value when `rm` is `Ceiling`, `Down`, or `Nearest`.
            /// Otherwise, this function will panic.
            ///
            /// If the [`Rational`] is larger than the maximum value of the unsigned type, then it
            /// will be rounded to the maximum value when `rm` is `Floor`, `Down`, or `Nearest`.
            /// Otherwise, this function will panic.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n \log n \log\log n)$
            ///
            /// $M(n) = O(n \log n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `value.significant_bits()`.
            ///
            /// # Panics
            /// Panics if the [`Rational`] is not an integer and `rm` is `Exact`, if the
            /// [`Rational`] is less than `T::MIN` and `rm` is not `Down`, `Ceiling`, or `Nearest`,
            /// or if the [`Rational`] is greater than `T::MAX` and `rm` is not `Down`, `Floor`, or
            /// `Nearest`.
            ///
            /// # Examples
            /// See [here](super::primitive_int_from_rational#rounding_from).
            #[inline]
            fn rounding_from(value: &Rational, rm: RoundingMode) -> ($s, Ordering) {
                rounding_from_signed(value, rm)
            }
        }
    };
}
apply_to_unsigned_signed_pairs!(impl_from_signed);