1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::Integer;
use core::cmp::Ordering;
use core::ops::{Shl, ShlAssign};
use malachite_base::num::arithmetic::traits::{
    ShlRound, ShlRoundAssign, ShrRound, ShrRoundAssign, UnsignedAbs,
};
use malachite_base::num::basic::traits::Zero;
use malachite_base::rounding_modes::RoundingMode;

fn shl_round_signed_ref<'a, U, S: Copy + Ord + UnsignedAbs<Output = U> + Zero>(
    x: &'a Integer,
    bits: S,
    rm: RoundingMode,
) -> (Integer, Ordering)
where
    &'a Integer: Shl<U, Output = Integer> + ShrRound<U, Output = Integer>,
{
    if bits >= S::ZERO {
        (x << bits.unsigned_abs(), Ordering::Equal)
    } else {
        x.shr_round(bits.unsigned_abs(), rm)
    }
}

fn shl_round_assign_i<U, S: Copy + Ord + UnsignedAbs<Output = U> + Zero>(
    x: &mut Integer,
    bits: S,
    rm: RoundingMode,
) -> Ordering
where
    Integer: ShlAssign<U> + ShrRoundAssign<U>,
{
    if bits >= S::ZERO {
        *x <<= bits.unsigned_abs();
        Ordering::Equal
    } else {
        x.shr_round_assign(bits.unsigned_abs(), rm)
    }
}

macro_rules! impl_shl_round_signed {
    ($t:ident) => {
        impl ShlRound<$t> for Integer {
            type Output = Integer;

            /// Left-shifts an [`Integer`] (multiplies or divides it by a power of 2), taking it by
            /// value, and rounds according to the specified rounding mode. An [`Ordering`] is also
            /// returned, indicating whether the returned value is less than, equal to, or greater
            /// than the exact value. If `bits` is non-negative, then the returned [`Ordering`] is
            /// always `Equal`, even if the higher bits of the result are lost.
            ///
            /// Passing `RoundingMode::Floor` is equivalent to using `>>`. To test whether
            /// `RoundingMode::Exact` can be passed, use `bits > 0 ||
            /// self.divisible_by_power_of_2(bits)`. Rounding might only be necessary if `bits` is
            /// negative.
            ///
            /// Let $q = x2^k$, and let $g$ be the function that just returns the first element of
            /// the pair, without the [`Ordering`]:
            ///
            /// $g(x, k, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$
            ///
            /// $g(x, k, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$
            ///
            /// $$
            /// g(x, k, \mathrm{Nearest}) = \begin{cases}
            ///     \lfloor q \rfloor & \text{if}
            ///         \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
            ///     \lceil q \rceil & \text{if}
            ///         \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
            ///     \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor =
            ///         \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
            ///     \\ \text{is even}, \\\\
            ///     \lceil q \rceil &
            ///     \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
            ///         \\ \lfloor q \rfloor \\ \text{is odd}.
            /// \end{cases}
            /// $$
            ///
            /// $g(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
            ///
            /// Then
            ///
            /// $f(x, k, r) = (g(x, k, r), \operatorname{cmp}(g(x, k, r), q))$.
            ///
            /// # Worst-case complexity
            /// $T(n, m) = O(n + m)$
            ///
            /// $M(n, m) = O(n + m)$
            ///
            /// where $T$ is time, $M$ is additional memory, $n$ is `self.significant_bits()`, and
            /// $m$ is `max(bits, 0)`.
            ///
            /// # Panics
            /// Let $k$ be `bits`. Panics if $k$ is negative and `rm` is `RoundingMode::Exact` but
            /// `self` is not divisible by $2^{-k}$.
            ///
            /// # Examples
            /// See [here](super::shl_round#shl_round).
            #[inline]
            fn shl_round(mut self, bits: $t, rm: RoundingMode) -> (Integer, Ordering) {
                let o = self.shl_round_assign(bits, rm);
                (self, o)
            }
        }

        impl<'a> ShlRound<$t> for &'a Integer {
            type Output = Integer;

            /// Left-shifts an [`Integer`] (multiplies or divides it by a power of 2), taking it by
            /// reference, and rounds according to the specified rounding mode. An [`Ordering`] is
            /// also returned, indicating whether the returned value is less than, equal to, or
            /// greater than the exact value. If `bits` is non-negative, then the returned
            /// [`Ordering`] is always `Equal`, even if the higher bits of the result are lost.
            ///
            /// Passing `RoundingMode::Floor` is equivalent to using `>>`. To test whether
            /// `RoundingMode::Exact` can be passed, use `bits > 0 ||
            /// self.divisible_by_power_of_2(bits)`. Rounding might only be necessary if `bits` is
            /// negative.
            ///
            /// Let $q = x2^k$, and let $g$ be the function that just returns the first element of
            /// the pair, without the [`Ordering`]:
            ///
            /// $g(x, k, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$
            ///
            /// $g(x, k, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$
            ///
            /// $$
            /// g(x, k, \mathrm{Nearest}) = \begin{cases}
            ///     \lfloor q \rfloor & \text{if}
            ///         \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
            ///     \lceil q \rceil & \text{if}
            ///         \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
            ///     \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor =
            ///         \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
            ///     \\ \text{is even}, \\\\
            ///     \lceil q \rceil &
            ///     \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
            ///         \\ \lfloor q \rfloor \\ \text{is odd}.
            /// \end{cases}
            /// $$
            ///
            /// $g(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
            ///
            /// Then
            ///
            /// $f(x, k, r) = (g(x, k, r), \operatorname{cmp}(g(x, k, r), q))$.
            ///
            /// # Worst-case complexity
            /// $T(n, m) = O(n + m)$
            ///
            /// $M(n, m) = O(n + m)$
            ///
            /// where $T$ is time, $M$ is additional memory, $n$ is `self.significant_bits()`, and
            /// $m$ is `max(bits, 0)`.
            ///
            /// # Panics
            /// Let $k$ be `bits`. Panics if $k$ is negative and `rm` is `RoundingMode::Exact` but
            /// `self` is not divisible by $2^{-k}$.
            ///
            /// # Examples
            /// See [here](super::shl_round#shl_round).
            #[inline]
            fn shl_round(self, bits: $t, rm: RoundingMode) -> (Integer, Ordering) {
                shl_round_signed_ref(self, bits, rm)
            }
        }

        impl ShlRoundAssign<$t> for Integer {
            /// Left-shifts an [`Integer`] (multiplies or divides it by a power of 2) and rounds
            /// according to the specified rounding mode, in place. An [`Ordering`] is returned,
            /// indicating whether the assigned value is less than, equal to, or greater than the
            /// exact value.
            ///
            /// Passing `RoundingMode::Floor` is equivalent to using `>>`. To test whether
            /// `RoundingMode::Exact` can be passed, use `bits > 0 ||
            /// self.divisible_by_power_of_2(bits)`. Rounding might only be necessary if `bits` is
            /// negative.
            ///
            /// See the [`ShlRound`] documentation for details.
            ///
            /// # Worst-case complexity
            /// $T(n, m) = O(n + m)$
            ///
            /// $M(n, m) = O(n + m)$
            ///
            /// where $T$ is time, $M$ is additional memory, $n$ is `self.significant_bits()`, and
            /// $m$ is `max(bits, 0)`.
            ///
            /// # Examples
            /// See [here](super::shl_round#shl_round_assign).
            #[inline]
            fn shl_round_assign(&mut self, bits: $t, rm: RoundingMode) -> Ordering {
                shl_round_assign_i(self, bits, rm)
            }
        }
    };
}
apply_to_signeds!(impl_shl_round_signed);