1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 1991, 1993-1995, 1997, 1999, 2000, 2001, 2002, 2012 Free Software Foundation,
//      Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::Integer;
use crate::natural::arithmetic::add::limbs_slice_add_limb_in_place;
use crate::natural::arithmetic::sub::limbs_sub_limb_in_place;
use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::Limb;
use alloc::vec::Vec;
use core::cmp::Ordering;
use malachite_base::num::arithmetic::traits::{PowerOf2, WrappingAddAssign, WrappingNegAssign};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::BitAccess;
use malachite_base::slices::{slice_leading_zeros, slice_test_zero};

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, performs an
// action equivalent to taking the two's complement of the limbs and getting the bit at the
// specified index. Sufficiently high indices will return `true`. The slice cannot be empty or
// contain only zeros.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
//
// This is equivalent to `mpz_tstbit` from `mpz/tstbit.c`, GMP 6.2.1, where `d` is negative.
pub_test! {limbs_get_bit_neg(xs: &[Limb], index: u64) -> bool {
    let x_i = usize::exact_from(index >> Limb::LOG_WIDTH);
    if x_i >= xs.len() {
        // We're indexing into the infinite suffix of 1s
        true
    } else {
        let x = if slice_test_zero(&xs[..x_i]) {
            xs[x_i].wrapping_neg()
        } else {
            !xs[x_i]
        };
        x.get_bit(index & Limb::WIDTH_MASK)
    }
}}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, performs an
// action equivalent to taking the two's complement of the limbs, setting a bit at the specified
// index to `true`, and taking the two's complement again. Indices that are outside the bounds of
// the slice will result in no action being taken, since negative numbers in two's complement have
// infinitely many leading 1s. The slice cannot be empty or contain only zeros.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
//
// # Panics
// If the slice contains only zeros a panic may occur.
//
// This is equivalent to `mpz_setbit` from `mpz/setbit.c`, GMP 6.2.1, where `d` is negative.
pub_test! {limbs_set_bit_neg(xs: &mut [Limb], index: u64) {
    let x_i = usize::exact_from(index >> Limb::LOG_WIDTH);
    if x_i >= xs.len() {
        return;
    }
    let reduced_index = index & Limb::WIDTH_MASK;
    let zero_bound = slice_leading_zeros(xs);
    match x_i.cmp(&zero_bound) {
        Ordering::Equal => {
            let boundary = &mut xs[x_i];
            // boundary != 0 here
            *boundary -= 1;
            boundary.clear_bit(reduced_index);
            // boundary != Limb::MAX here
            *boundary += 1;
        }
        Ordering::Less => {
            assert!(!limbs_sub_limb_in_place(
                &mut xs[x_i..],
                Limb::power_of_2(reduced_index),
            ));
        }
        Ordering::Greater => {
            xs[x_i].clear_bit(reduced_index);
        }
    }
}}

fn limbs_clear_bit_neg_helper(xs: &mut [Limb], x_i: usize, reduced_index: u64) -> bool {
    let zero_bound = slice_leading_zeros(xs);
    match x_i.cmp(&zero_bound) {
        Ordering::Equal => {
            // xs[x_i] != 0 here
            let mut boundary = xs[x_i] - 1;
            boundary.set_bit(reduced_index);
            boundary.wrapping_add_assign(1);
            xs[x_i] = boundary;
            boundary == 0 && limbs_slice_add_limb_in_place(&mut xs[x_i + 1..], 1)
        }
        Ordering::Greater => {
            xs[x_i].set_bit(reduced_index);
            false
        }
        _ => false,
    }
}

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, performs an
// action equivalent to taking the two's complement of the limbs, setting a bit at the specified
// index to `false`, and taking the two's complement again. Inputs that would result in new `true`
// bits outside of the slice will cause a panic. The slice cannot be empty or contain only zeros.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
//
// # Panics
// Panics if evaluation would require new `true` bits outside of the slice. If the slice contains
// only zeros a panic may occur.
//
// This is equivalent to `mpz_clrbit` from `mpz/clrbit.c`, GMP 6.2.1, where `d` is negative and
// `bit_idx` small enough that no additional memory needs to be given to `d`.
pub fn limbs_slice_clear_bit_neg(xs: &mut [Limb], index: u64) {
    let x_i = usize::exact_from(index >> Limb::LOG_WIDTH);
    let reduced_index = index & Limb::WIDTH_MASK;
    if x_i >= xs.len() || limbs_clear_bit_neg_helper(xs, x_i, reduced_index) {
        panic!("Setting bit cannot be done within existing slice");
    }
}

// Interpreting a `Vec` of `Limb`s as the limbs (in ascending order) of a `Natural`, performs an
// action equivalent to taking the two's complement of the limbs, setting a bit at the specified
// index to `false`, and taking the two's complement again. Sufficiently high indices will increase
// the length of the limbs vector. The slice cannot be empty or contain only zeros.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(n)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
//
// # Panics
// If the slice contains only zeros a panic may occur.
//
// This is equivalent to `mpz_clrbit` from `mpz/clrbit.c`, GMP 6.2.1, where `d` is negative.
pub_test! {limbs_vec_clear_bit_neg(xs: &mut Vec<Limb>, index: u64) {
    let x_i = usize::exact_from(index >> Limb::LOG_WIDTH);
    let reduced_index = index & Limb::WIDTH_MASK;
    if x_i < xs.len() {
        if limbs_clear_bit_neg_helper(xs, x_i, reduced_index) {
            xs.push(1);
        }
    } else {
        xs.resize(x_i, 0);
        xs.push(Limb::power_of_2(reduced_index));
    }
}}

impl Natural {
    // self cannot be zero
    pub(crate) fn get_bit_neg(&self, index: u64) -> bool {
        match *self {
            Natural(Small(small)) => index >= Limb::WIDTH || small.wrapping_neg().get_bit(index),
            Natural(Large(ref limbs)) => limbs_get_bit_neg(limbs, index),
        }
    }

    // self cannot be zero
    fn set_bit_neg(&mut self, index: u64) {
        match *self {
            Natural(Small(ref mut small)) => {
                if index < Limb::WIDTH {
                    small.wrapping_neg_assign();
                    small.set_bit(index);
                    small.wrapping_neg_assign();
                }
            }
            Natural(Large(ref mut limbs)) => {
                limbs_set_bit_neg(limbs, index);
                self.trim()
            }
        }
    }

    // self cannot be zero
    fn clear_bit_neg(&mut self, index: u64) {
        match *self {
            Natural(Small(ref mut small)) if index < Limb::WIDTH => {
                let mut cleared_small = small.wrapping_neg();
                cleared_small.clear_bit(index);
                if cleared_small == 0 {
                    *self = Natural(Large(vec![0, 1]));
                } else {
                    *small = cleared_small.wrapping_neg();
                }
            }
            Natural(Small(_)) => {
                let limbs = self.promote_in_place();
                limbs_vec_clear_bit_neg(limbs, index);
            }
            Natural(Large(ref mut limbs)) => {
                limbs_vec_clear_bit_neg(limbs, index);
            }
        }
    }
}

/// Provides functions for accessing and modifying the $i$th bit of a [`Integer`], or the
/// coefficient of $2^i$ in its two's complement binary expansion.
///
/// # Examples
/// ```
/// use malachite_base::num::logic::traits::BitAccess;
/// use malachite_base::num::basic::traits::{NegativeOne, Zero};
/// use malachite_nz::integer::Integer;
///
/// let mut x = Integer::ZERO;
/// x.assign_bit(2, true);
/// x.assign_bit(5, true);
/// x.assign_bit(6, true);
/// assert_eq!(x, 100);
/// x.assign_bit(2, false);
/// x.assign_bit(5, false);
/// x.assign_bit(6, false);
/// assert_eq!(x, 0);
///
/// let mut x = Integer::from(-0x100);
/// x.assign_bit(2, true);
/// x.assign_bit(5, true);
/// x.assign_bit(6, true);
/// assert_eq!(x, -156);
/// x.assign_bit(2, false);
/// x.assign_bit(5, false);
/// x.assign_bit(6, false);
/// assert_eq!(x, -256);
///
/// let mut x = Integer::ZERO;
/// x.flip_bit(10);
/// assert_eq!(x, 1024);
/// x.flip_bit(10);
/// assert_eq!(x, 0);
///
/// let mut x = Integer::NEGATIVE_ONE;
/// x.flip_bit(10);
/// assert_eq!(x, -1025);
/// x.flip_bit(10);
/// assert_eq!(x, -1);
/// ```
impl BitAccess for Integer {
    /// Determines whether the $i$th bit of an [`Integer`], or the coefficient of $2^i$ in its two's
    /// complement binary expansion, is 0 or 1.
    ///
    /// `false` means 0 and `true` means 1. Getting bits beyond the [`Integer`]'s width is allowed;
    /// those bits are `false` if the [`Integer`] is non-negative and `true` if it is negative.
    ///
    /// If $n \geq 0$, let
    /// $$
    /// n = \sum_{i=0}^\infty 2^{b_i};
    /// $$
    /// but if $n < 0$, let
    /// $$
    /// -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i},
    /// $$
    /// where for all $i$, $b_i\in \\{0, 1\\}$.
    ///
    /// $f(n, i) = (b_i = 1)$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Pow;
    /// use malachite_base::num::logic::traits::BitAccess;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!(Integer::from(123).get_bit(2), false);
    /// assert_eq!(Integer::from(123).get_bit(3), true);
    /// assert_eq!(Integer::from(123).get_bit(100), false);
    /// assert_eq!(Integer::from(-123).get_bit(0), true);
    /// assert_eq!(Integer::from(-123).get_bit(1), false);
    /// assert_eq!(Integer::from(-123).get_bit(100), true);
    /// assert_eq!(Integer::from(10u32).pow(12).get_bit(12), true);
    /// assert_eq!(Integer::from(10u32).pow(12).get_bit(100), false);
    /// assert_eq!((-Integer::from(10u32).pow(12)).get_bit(12), true);
    /// assert_eq!((-Integer::from(10u32).pow(12)).get_bit(100), true);
    /// ```
    fn get_bit(&self, index: u64) -> bool {
        match *self {
            Integer {
                sign: true,
                ref abs,
            } => abs.get_bit(index),
            Integer {
                sign: false,
                ref abs,
            } => abs.get_bit_neg(index),
        }
    }

    /// Sets the $i$th bit of an [`Integer`], or the coefficient of $2^i$ in its two's complement
    /// binary expansion, to 1.
    ///
    /// If $n \geq 0$, let
    /// $$
    /// n = \sum_{i=0}^\infty 2^{b_i};
    /// $$
    /// but if $n < 0$, let
    /// $$
    /// -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i},
    /// $$
    /// where for all $i$, $b_i\in \\{0, 1\\}$.
    /// $$
    /// n \gets \\begin{cases}
    ///     n + 2^j & \text{if} \\quad b_j = 0, \\\\
    ///     n & \text{otherwise}.
    /// \\end{cases}
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitAccess;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// let mut x = Integer::ZERO;
    /// x.set_bit(2);
    /// x.set_bit(5);
    /// x.set_bit(6);
    /// assert_eq!(x, 100);
    ///
    /// let mut x = Integer::from(-0x100);
    /// x.set_bit(2);
    /// x.set_bit(5);
    /// x.set_bit(6);
    /// assert_eq!(x, -156);
    /// ```
    fn set_bit(&mut self, index: u64) {
        match *self {
            Integer {
                sign: true,
                ref mut abs,
            } => abs.set_bit(index),
            Integer {
                sign: false,
                ref mut abs,
            } => abs.set_bit_neg(index),
        }
    }

    /// Sets the $i$th bit of an [`Integer`], or the coefficient of $2^i$ in its binary expansion,
    /// to 0.
    ///
    /// If $n \geq 0$, let
    /// $$
    /// n = \sum_{i=0}^\infty 2^{b_i};
    /// $$
    /// but if $n < 0$, let
    /// $$
    /// -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i},
    /// $$
    /// where for all $i$, $b_i\in \\{0, 1\\}$.
    /// $$
    /// n \gets \\begin{cases}
    ///     n - 2^j & \text{if} \\quad b_j = 1, \\\\
    ///     n & \text{otherwise}.
    /// \\end{cases}
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `index`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitAccess;
    /// use malachite_nz::integer::Integer;
    ///
    /// let mut x = Integer::from(0x7f);
    /// x.clear_bit(0);
    /// x.clear_bit(1);
    /// x.clear_bit(3);
    /// x.clear_bit(4);
    /// assert_eq!(x, 100);
    ///
    /// let mut x = Integer::from(-156);
    /// x.clear_bit(2);
    /// x.clear_bit(5);
    /// x.clear_bit(6);
    /// assert_eq!(x, -256);
    /// ```
    fn clear_bit(&mut self, index: u64) {
        match *self {
            Integer {
                sign: true,
                ref mut abs,
            } => abs.clear_bit(index),
            Integer {
                sign: false,
                ref mut abs,
            } => abs.clear_bit_neg(index),
        }
    }
}