1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::Integer;
use crate::natural::Natural;
use malachite_base::num::arithmetic::traits::{Abs, AbsAssign, UnsignedAbs};

impl Abs for Integer {
    type Output = Integer;

    /// Takes the absolute value of an [`Integer`], taking the [`Integer`] by value.
    ///
    /// $$
    /// f(x) = |x|.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Abs;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!(Integer::ZERO.abs(), 0);
    /// assert_eq!(Integer::from(123).abs(), 123);
    /// assert_eq!(Integer::from(-123).abs(), 123);
    /// ```
    #[inline]
    fn abs(mut self) -> Integer {
        self.sign = true;
        self
    }
}

impl<'a> Abs for &'a Integer {
    type Output = Integer;

    /// Takes the absolute value of an [`Integer`], taking the [`Integer`] by reference.
    ///
    /// $$
    /// f(x) = |x|.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::Abs;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!((&Integer::ZERO).abs(), 0);
    /// assert_eq!((&Integer::from(123)).abs(), 123);
    /// assert_eq!((&Integer::from(-123)).abs(), 123);
    /// ```
    fn abs(self) -> Integer {
        Integer {
            sign: true,
            abs: self.abs.clone(),
        }
    }
}

impl AbsAssign for Integer {
    /// Replaces an [`Integer`] with its absolute value.
    ///
    /// $$
    /// x \gets |x|.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::AbsAssign;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// let mut x = Integer::ZERO;
    /// x.abs_assign();
    /// assert_eq!(x, 0);
    ///
    /// let mut x = Integer::from(123);
    /// x.abs_assign();
    /// assert_eq!(x, 123);
    ///
    /// let mut x = Integer::from(-123);
    /// x.abs_assign();
    /// assert_eq!(x, 123);
    /// ```
    #[inline]
    fn abs_assign(&mut self) {
        self.sign = true;
    }
}

impl UnsignedAbs for Integer {
    type Output = Natural;

    /// Takes the absolute value of an [`Integer`], taking the [`Integer`] by value and converting
    /// the result to a [`Natural`].
    ///
    /// $$
    /// f(x) = |x|.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::UnsignedAbs;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!(Integer::ZERO.unsigned_abs(), 0);
    /// assert_eq!(Integer::from(123).unsigned_abs(), 123);
    /// assert_eq!(Integer::from(-123).unsigned_abs(), 123);
    /// ```
    #[inline]
    fn unsigned_abs(self) -> Natural {
        self.abs
    }
}

impl<'a> UnsignedAbs for &'a Integer {
    type Output = Natural;

    /// Takes the absolute value of an [`Integer`], taking the [`Integer`] by reference and
    /// converting the result to a [`Natural`].
    ///
    /// $$
    /// f(x) = |x|.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::UnsignedAbs;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!((&Integer::ZERO).unsigned_abs(), 0);
    /// assert_eq!((&Integer::from(123)).unsigned_abs(), 123);
    /// assert_eq!((&Integer::from(-123)).unsigned_abs(), 123);
    /// ```
    #[inline]
    fn unsigned_abs(self) -> Natural {
        self.abs.clone()
    }
}

impl Integer {
    /// Finds the absolute value of an [`Integer`], taking the [`Integer`] by reference and
    /// returning a reference to the internal [`Natural`] absolute value.
    ///
    /// $$
    /// f(x) = |x|.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!(*Integer::ZERO.unsigned_abs_ref(), 0);
    /// assert_eq!(*Integer::from(123).unsigned_abs_ref(), 123);
    /// assert_eq!(*Integer::from(-123).unsigned_abs_ref(), 123);
    /// ```
    #[inline]
    pub const fn unsigned_abs_ref(&self) -> &Natural {
        &self.abs
    }

    /// Mutates the absolute value of an [`Integer`] using a provided closure, and then returns
    /// whatever the closure returns.
    ///
    /// This function is similar to the [`unsigned_abs_ref`](Integer::unsigned_abs_ref) function,
    /// which returns a reference to the absolute value. A function that returns a _mutable_
    /// reference would be too dangerous, as it could leave the [`Integer`] in an invalid state
    /// (specifically, with a negative sign but a zero absolute value). So rather than returning a
    /// mutable reference, this function allows mutation of the absolute value using a closure.
    /// After the closure executes, this function ensures that the [`Integer`] remains valid.
    ///
    /// There is only constant time and memory overhead on top of the time and memory used by the
    /// closure.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivAssignMod;
    /// use malachite_base::num::basic::traits::Two;
    /// use malachite_nz::integer::Integer;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut n = Integer::from(-123);
    /// let remainder = n.mutate_unsigned_abs(|x| x.div_assign_mod(Natural::TWO));
    /// assert_eq!(n, -61);
    /// assert_eq!(remainder, 1);
    ///
    /// let mut n = Integer::from(-123);
    /// n.mutate_unsigned_abs(|x| *x >>= 10);
    /// assert_eq!(n, 0);
    /// ```
    pub fn mutate_unsigned_abs<F: FnOnce(&mut Natural) -> T, T>(&mut self, f: F) -> T {
        let out = f(&mut self.abs);
        if !self.sign && self.abs == 0 {
            self.sign = true;
        }
        out
    }
}