1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
use num::basic::floats::PrimitiveFloat;
use std::cmp::Ordering;
use std::fmt::{self, Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::str::FromStr;

/// `NiceFloat` is a wrapper around primitive float types that provides nicer [`Eq`], [`Ord`],
/// [`Hash`], [`Display`], and [`FromStr`] instances.
///
/// In most languages, floats behave weirdly due to the IEEE 754 standard. The `NiceFloat` type
/// ignores the standard in favor of more intuitive behavior.
/// - Using `NiceFloat`, `NaN`s are equal to themselves. There is a single, unique `NaN`; there's no
///   concept of signalling `NaN`s. Positive and negative zero are two distinct values, not equal to
///   each other.
/// - The `NiceFloat` hash respects this equality.
/// - `NiceFloat` has a total order. These are the classes of floats, in ascending order:
///   - Negative infinity
///   - Negative nonzero finite floats
///   - Negative zero
///   - NaN
///   - Positive zero
///   - Positive nonzero finite floats
///   - Positive infinity
/// - `NiceFloat` uses a different [`Display`] implementation than floats do by default in Rust. For
///   example, Rust will format `f32::MIN_POSITIVE_SUBNORMAL` as something with many zeros, but
///   `NiceFloat(f32::MIN_POSITIVE_SUBNORMAL)` just formats it as `"1.0e-45"`. The conversion
///   function uses David Tolnay's [`ryu`](https://docs.rs/ryu/latest/ryu/) crate, with a few
///   modifications:
///   - All finite floats have a decimal point. For example, Ryu by itself would convert
///     `f32::MIN_POSITIVE_SUBNORMAL` to `"1e-45"`.
///   - Positive infinity, negative infinity, and NaN are converted to the strings `"Infinity"`,
///     `"-Infinity"`, and "`NaN`", respectively.
/// - [`FromStr`] accepts these strings.
#[derive(Clone, Copy, Default)]
pub struct NiceFloat<T: PrimitiveFloat>(pub T);

#[derive(Eq, Ord, PartialEq, PartialOrd)]
enum FloatType {
    NegativeInfinity,
    NegativeFinite,
    NegativeZero,
    NaN,
    PositiveZero,
    PositiveFinite,
    PositiveInfinity,
}

impl<T: PrimitiveFloat> NiceFloat<T> {
    fn float_type(self) -> FloatType {
        let f = self.0;
        if f.is_nan() {
            FloatType::NaN
        } else if f.sign() == Ordering::Greater {
            if f == T::ZERO {
                FloatType::PositiveZero
            } else if f.is_finite() {
                FloatType::PositiveFinite
            } else {
                FloatType::PositiveInfinity
            }
        } else if f == T::ZERO {
            FloatType::NegativeZero
        } else if f.is_finite() {
            FloatType::NegativeFinite
        } else {
            FloatType::NegativeInfinity
        }
    }
}

impl<T: PrimitiveFloat> PartialEq<NiceFloat<T>> for NiceFloat<T> {
    /// Compares two `NiceFloat`s for equality.
    ///
    /// This implementation ignores the IEEE 754 standard in favor of a comparison operation that
    /// respects the expected properties of antisymmetry, reflexivity, and transitivity.
    /// `NiceFloat` has a total order. These are the classes of floats, in ascending order:
    ///   - Negative infinity
    ///   - Negative nonzero finite floats
    ///   - Negative zero
    ///   - NaN
    ///   - Positive zero
    ///   - Positive nonzero finite floats
    ///   - Positive infinity
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::float::NiceFloat;
    ///
    /// assert_eq!(NiceFloat(0.0), NiceFloat(0.0));
    /// assert_eq!(NiceFloat(f32::NAN), NiceFloat(f32::NAN));
    /// assert_ne!(NiceFloat(f32::NAN), NiceFloat(0.0));
    /// assert_ne!(NiceFloat(0.0), NiceFloat(-0.0));
    /// assert_eq!(NiceFloat(1.0), NiceFloat(1.0));
    /// ```
    #[inline]
    fn eq(&self, other: &NiceFloat<T>) -> bool {
        let f = self.0;
        let g = other.0;
        f.to_bits() == g.to_bits() || f.is_nan() && g.is_nan()
    }
}

impl<T: PrimitiveFloat> Eq for NiceFloat<T> {}

impl<T: PrimitiveFloat> Hash for NiceFloat<T> {
    /// Computes a hash of a `NiceFloat`.
    ///
    /// The hash is compatible with `NiceFloat` equality: all `NaN`s hash to the same value.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    fn hash<H: Hasher>(&self, state: &mut H) {
        let f = self.0;
        if f.is_nan() {
            "NaN".hash(state)
        } else {
            f.to_bits().hash(state)
        }
    }
}

impl<T: PrimitiveFloat> Ord for NiceFloat<T> {
    /// Compares two `NiceFloat`s.
    ///
    /// This implementation ignores the IEEE 754 standard in favor of an equality operation that
    /// respects the expected properties of symmetry, reflexivity, and transitivity. Using
    /// `NiceFloat`, `NaN`s are equal to themselves. There is a single, unique `NaN`; there's no
    /// concept of signalling `NaN`s. Positive and negative zero are two distinct values, not equal
    /// to each other.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::floats::PrimitiveFloat;
    /// use malachite_base::num::float::NiceFloat;
    ///
    /// assert!(NiceFloat(0.0) > NiceFloat(-0.0));
    /// assert!(NiceFloat(f32::NAN) < NiceFloat(0.0));
    /// assert!(NiceFloat(f32::NAN) > NiceFloat(-0.0));
    /// assert!(NiceFloat(f32::POSITIVE_INFINITY) > NiceFloat(f32::NAN));
    /// assert!(NiceFloat(f32::NAN) < NiceFloat(1.0));
    /// ```
    fn cmp(&self, other: &NiceFloat<T>) -> Ordering {
        let self_type = self.float_type();
        let other_type = other.float_type();
        self_type.cmp(&other_type).then_with(|| {
            if self_type == FloatType::PositiveFinite || self_type == FloatType::NegativeFinite {
                self.0.partial_cmp(&other.0).unwrap()
            } else {
                Ordering::Equal
            }
        })
    }
}

impl<T: PrimitiveFloat> PartialOrd<NiceFloat<T>> for NiceFloat<T> {
    /// Compares a `NiceFloat` to another `NiceFloat`.
    ///
    /// See the documentation for the [`Ord`] implementation.
    #[inline]
    fn partial_cmp(&self, other: &NiceFloat<T>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

#[doc(hidden)]
pub trait FmtRyuString: Copy {
    fn fmt_ryu_string(self, f: &mut Formatter<'_>) -> fmt::Result;
}

macro_rules! impl_fmt_ryu_string {
    ($f: ident) => {
        impl FmtRyuString for $f {
            #[inline]
            fn fmt_ryu_string(self, f: &mut Formatter<'_>) -> fmt::Result {
                let mut buffer = ryu::Buffer::new();
                let printed = buffer.format_finite(self);
                // Convert e.g. "1e100" to "1.0e100".
                // `printed` is ASCII, so we can manipulate bytes rather than chars.
                let mut e_index = None;
                let mut found_dot = false;
                for (i, &b) in printed.as_bytes().iter().enumerate() {
                    match b {
                        b'.' => {
                            found_dot = true;
                            break; // If there's a '.', we don't need to do anything
                        }
                        b'e' => {
                            e_index = Some(i);
                            break; // OK to break since there won't be a '.' after an 'e'
                        }
                        _ => {}
                    }
                }
                if found_dot {
                    f.write_str(printed)
                } else {
                    if let Some(e_index) = e_index {
                        let mut out_bytes = vec![0; printed.len() + 2];
                        let (in_bytes_lo, in_bytes_hi) = printed.as_bytes().split_at(e_index);
                        let (out_bytes_lo, out_bytes_hi) = out_bytes.split_at_mut(e_index);
                        out_bytes_lo.copy_from_slice(in_bytes_lo);
                        out_bytes_hi[0] = b'.';
                        out_bytes_hi[1] = b'0';
                        out_bytes_hi[2..].copy_from_slice(in_bytes_hi);
                        f.write_str(std::str::from_utf8(&out_bytes).unwrap())
                    } else {
                        panic!("Unexpected Ryu string: {}", printed);
                    }
                }
            }
        }
    };
}
impl_fmt_ryu_string!(f32);
impl_fmt_ryu_string!(f64);

impl<T: PrimitiveFloat> Display for NiceFloat<T> {
    /// Formats a `NiceFloat` as a string.
    ///
    /// `NiceFloat` uses a different [`Display`] implementation than floats do by default in Rust.
    /// For example, Rust will convert `f32::MIN_POSITIVE_SUBNORMAL` to something with many zeros,
    /// but `NiceFloat(f32::MIN_POSITIVE_SUBNORMAL)` just converts to `"1.0e-45"`. The conversion
    /// function uses David Tolnay's [`ryu`](https://docs.rs/ryu/latest/ryu/) crate, with a few
    /// modifications:
    /// - All finite floats have a decimal point. For example, Ryu by itself would convert
    ///   `f32::MIN_POSITIVE_SUBNORMAL` to `"1e-45"`.
    /// - Positive infinity, negative infinity, and NaN are converted to the strings `"Infinity"`,
    ///   `"-Infinity"`, and "`NaN`", respectively.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::floats::PrimitiveFloat;
    /// use malachite_base::num::float::NiceFloat;
    ///
    /// assert_eq!(NiceFloat(0.0).to_string(), "0.0");
    /// assert_eq!(NiceFloat(-0.0).to_string(), "-0.0");
    /// assert_eq!(NiceFloat(f32::POSITIVE_INFINITY).to_string(), "Infinity");
    /// assert_eq!(NiceFloat(f32::NEGATIVE_INFINITY).to_string(), "-Infinity");
    /// assert_eq!(NiceFloat(f32::NAN).to_string(), "NaN");
    ///
    /// assert_eq!(NiceFloat(1.0).to_string(), "1.0");
    /// assert_eq!(NiceFloat(-1.0).to_string(), "-1.0");
    /// assert_eq!(
    ///     NiceFloat(f32::MIN_POSITIVE_SUBNORMAL).to_string(),
    ///     "1.0e-45"
    /// );
    /// assert_eq!(
    ///     NiceFloat(std::f64::consts::E).to_string(),
    ///     "2.718281828459045"
    /// );
    /// assert_eq!(
    ///     NiceFloat(std::f64::consts::PI).to_string(),
    ///     "3.141592653589793"
    /// );
    /// ```
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        if self.0.is_nan() {
            f.write_str("NaN")
        } else if self.0.is_infinite() {
            if self.0.sign() == Ordering::Greater {
                f.write_str("Infinity")
            } else {
                f.write_str("-Infinity")
            }
        } else {
            self.0.fmt_ryu_string(f)
        }
    }
}

impl<T: PrimitiveFloat> Debug for NiceFloat<T> {
    /// Formats a `NiceFloat` as a string.
    ///
    /// This is identical to the [`Display::fmt`] implementation.
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<T: PrimitiveFloat> FromStr for NiceFloat<T> {
    type Err = <T as FromStr>::Err;

    /// Converts a `&str` to a `NiceFloat`.
    ///
    /// If the `&str` does not represent a valid `NiceFloat`, an `Err` is returned.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ = `src.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::float::NiceFloat;
    /// use std::str::FromStr;
    ///
    /// assert_eq!(NiceFloat::from_str("NaN").unwrap(), NiceFloat(f32::NAN));
    /// assert_eq!(NiceFloat::from_str("-0.00").unwrap(), NiceFloat(-0.0f64));
    /// assert_eq!(NiceFloat::from_str(".123").unwrap(), NiceFloat(0.123f32));
    /// ```
    #[inline]
    fn from_str(src: &str) -> Result<NiceFloat<T>, <T as FromStr>::Err> {
        match src {
            "NaN" => Ok(T::NAN),
            "Infinity" => Ok(T::POSITIVE_INFINITY),
            "-Infinity" => Ok(T::NEGATIVE_INFINITY),
            "inf" | "-inf" => T::from_str("invalid"),
            src => T::from_str(src),
        }
        .map(NiceFloat)
    }
}