1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
#![allow(dead_code)]
#![allow(non_camel_case_types)]

use std::collections::HashMap;

pub type cpu_type_t = i32;
pub type cpu_subtype_t = i32;
pub type vm_prot_t = i32;
pub type off_t = u32;

// Capability bits used in the definition of cpu_type.
//

/// mask for architecture bits
pub const CPU_ARCH_MASK: cpu_type_t = 0xff00_0000u32 as cpu_type_t;
/// 64 bit ABI
pub const CPU_ARCH_ABI64: cpu_type_t = 0x0100_0000 as cpu_type_t;

//  Machine types known by all.
//

pub const CPU_TYPE_ANY: cpu_type_t = -1;

pub const CPU_TYPE_VAX: cpu_type_t = 1;
pub const CPU_TYPE_ROMP: cpu_type_t = 2;
pub const CPU_TYPE_NS32032: cpu_type_t = 4;
pub const CPU_TYPE_NS32332: cpu_type_t = 5;
pub const CPU_TYPE_MC680X0: cpu_type_t = 6;
pub const CPU_TYPE_X86: cpu_type_t = 7;
pub const CPU_TYPE_I386: cpu_type_t = CPU_TYPE_X86;
pub const CPU_TYPE_X86_64: cpu_type_t = (CPU_TYPE_X86 | CPU_ARCH_ABI64);
pub const CPU_TYPE_MIPS: cpu_type_t = 8;
pub const CPU_TYPE_NS32532: cpu_type_t = 9;
pub const CPU_TYPE_MC98000: cpu_type_t = 10;
pub const CPU_TYPE_HPPA: cpu_type_t = 11;
pub const CPU_TYPE_ARM: cpu_type_t = 12;
pub const CPU_TYPE_ARM64: cpu_type_t = (CPU_TYPE_ARM | CPU_ARCH_ABI64);
pub const CPU_TYPE_MC88000: cpu_type_t = 13;
pub const CPU_TYPE_SPARC: cpu_type_t = 14;
pub const CPU_TYPE_I860: cpu_type_t = 15;
pub const CPU_TYPE_ALPHA: cpu_type_t = 16;
pub const CPU_TYPE_RS6000: cpu_type_t = 17;
pub const CPU_TYPE_POWERPC: cpu_type_t = 18;
pub const CPU_TYPE_POWERPC64: cpu_type_t = (CPU_TYPE_POWERPC | CPU_ARCH_ABI64);

//  Machine subtypes (these are defined here, instead of in a machine
//  dependent directory, so that any program can get all definitions
//  regardless of where is it compiled).
//

// Capability bits used in the definition of cpu_subtype.
//

/// mask for feature flags
pub const CPU_SUBTYPE_MASK: cpu_subtype_t = 0xff00_0000u32 as cpu_subtype_t;
/// 64 bit libraries
pub const CPU_SUBTYPE_LIB64: cpu_subtype_t = 0x8000_0000u32 as cpu_subtype_t;

pub fn get_cpu_subtype_type(subtype: cpu_subtype_t) -> u32 {
    (subtype as u32) & !(CPU_SUBTYPE_MASK as u32)
}

pub fn get_cpu_subtype_feature(subtype: cpu_subtype_t) -> u32 {
    ((subtype as u32) & (CPU_SUBTYPE_MASK as u32)) >> 24
}

//  Object files that are hand-crafted to run on any
//  implementation of an architecture are tagged with
//  CPU_SUBTYPE_MULTIPLE.  This functions essentially the same as
//  the "ALL" subtype of an architecture except that it allows us
//  to easily find object files that may need to be modified
//  whenever a new implementation of an architecture comes out.
//
//  It is the responsibility of the implementor to make sure the
//  software handles unsupported implementations elegantly.
//
pub const CPU_SUBTYPE_MULTIPLE: cpu_subtype_t = -1;
pub const CPU_SUBTYPE_LITTLE_ENDIAN: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_BIG_ENDIAN: cpu_subtype_t = 1;

//  VAX subtypes (these do *not* necessary conform to the actual cpu
//  ID assigned by DEC available via the SID register).
//

pub const CPU_SUBTYPE_VAX_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_VAX780: cpu_subtype_t = 1;
pub const CPU_SUBTYPE_VAX785: cpu_subtype_t = 2;
pub const CPU_SUBTYPE_VAX750: cpu_subtype_t = 3;
pub const CPU_SUBTYPE_VAX730: cpu_subtype_t = 4;
pub const CPU_SUBTYPE_UVAXI: cpu_subtype_t = 5;
pub const CPU_SUBTYPE_UVAXII: cpu_subtype_t = 6;
pub const CPU_SUBTYPE_VAX8200: cpu_subtype_t = 7;
pub const CPU_SUBTYPE_VAX8500: cpu_subtype_t = 8;
pub const CPU_SUBTYPE_VAX8600: cpu_subtype_t = 9;
pub const CPU_SUBTYPE_VAX8650: cpu_subtype_t = 10;
pub const CPU_SUBTYPE_VAX8800: cpu_subtype_t = 11;
pub const CPU_SUBTYPE_UVAXIII: cpu_subtype_t = 12;

//  680x0 subtypes
//
// The subtype definitions here are unusual for historical reasons.
// NeXT used to consider 68030 code as generic 68000 code.  For
// backwards compatability:
//
//  CPU_SUBTYPE_MC68030 symbol has been preserved for source code
//  compatability.
//
//  CPU_SUBTYPE_MC680x0_ALL has been defined to be the same
//  subtype as CPU_SUBTYPE_MC68030 for binary comatability.
//
//  CPU_SUBTYPE_MC68030_ONLY has been added to allow new object
//  files to be tagged as containing 68030-specific instructions.
//

pub const CPU_SUBTYPE_MC680X0_ALL: cpu_subtype_t = 1;
pub const CPU_SUBTYPE_MC68030: cpu_subtype_t = 1; /* compat */
pub const CPU_SUBTYPE_MC68040: cpu_subtype_t = 2;
pub const CPU_SUBTYPE_MC68030_ONLY: cpu_subtype_t = 3;

//  I386 subtypes
//

macro_rules! CPU_SUBTYPE_INTEL {
    ($f:expr, $m:expr) => {{
        ($f) + (($m) << 4)
    }};
}

pub const CPU_SUBTYPE_I386_ALL: cpu_subtype_t = CPU_SUBTYPE_INTEL!(3, 0);
pub const CPU_SUBTYPE_386: cpu_subtype_t = CPU_SUBTYPE_INTEL!(3, 0);
pub const CPU_SUBTYPE_486: cpu_subtype_t = CPU_SUBTYPE_INTEL!(4, 0);
pub const CPU_SUBTYPE_486SX: cpu_subtype_t = CPU_SUBTYPE_INTEL!(4, 8); // 8 << 4 = 128
pub const CPU_SUBTYPE_586: cpu_subtype_t = CPU_SUBTYPE_INTEL!(5, 0);
pub const CPU_SUBTYPE_PENT: cpu_subtype_t = CPU_SUBTYPE_INTEL!(5, 0);
pub const CPU_SUBTYPE_PENTPRO: cpu_subtype_t = CPU_SUBTYPE_INTEL!(6, 1);
pub const CPU_SUBTYPE_PENTII_M3: cpu_subtype_t = CPU_SUBTYPE_INTEL!(6, 3);
pub const CPU_SUBTYPE_PENTII_M5: cpu_subtype_t = CPU_SUBTYPE_INTEL!(6, 5);
pub const CPU_SUBTYPE_CELERON: cpu_subtype_t = CPU_SUBTYPE_INTEL!(7, 6);
pub const CPU_SUBTYPE_CELERON_MOBILE: cpu_subtype_t = CPU_SUBTYPE_INTEL!(7, 7);
pub const CPU_SUBTYPE_PENTIUM_3: cpu_subtype_t = CPU_SUBTYPE_INTEL!(8, 0);
pub const CPU_SUBTYPE_PENTIUM_3_M: cpu_subtype_t = CPU_SUBTYPE_INTEL!(8, 1);
pub const CPU_SUBTYPE_PENTIUM_3_XEON: cpu_subtype_t = CPU_SUBTYPE_INTEL!(8, 2);
pub const CPU_SUBTYPE_PENTIUM_M: cpu_subtype_t = CPU_SUBTYPE_INTEL!(9, 0);
pub const CPU_SUBTYPE_PENTIUM_4: cpu_subtype_t = CPU_SUBTYPE_INTEL!(10, 0);
pub const CPU_SUBTYPE_PENTIUM_4_M: cpu_subtype_t = CPU_SUBTYPE_INTEL!(10, 1);
pub const CPU_SUBTYPE_ITANIUM: cpu_subtype_t = CPU_SUBTYPE_INTEL!(11, 0);
pub const CPU_SUBTYPE_ITANIUM_2: cpu_subtype_t = CPU_SUBTYPE_INTEL!(11, 1);
pub const CPU_SUBTYPE_XEON: cpu_subtype_t = CPU_SUBTYPE_INTEL!(12, 0);
pub const CPU_SUBTYPE_XEON_MP: cpu_subtype_t = CPU_SUBTYPE_INTEL!(12, 1);

pub const CPU_SUBTYPE_INTEL_FAMILY_MAX: cpu_subtype_t = 15;
pub const CPU_SUBTYPE_INTEL_MODEL_ALL: cpu_subtype_t = 0;

//  X86 subtypes.
//

pub const CPU_SUBTYPE_X86_ALL: cpu_subtype_t = 3;
pub const CPU_SUBTYPE_X86_64_ALL: cpu_subtype_t = 3;
pub const CPU_SUBTYPE_X86_ARCH1: cpu_subtype_t = 4;
pub const CPU_SUBTYPE_X86_64_H: cpu_subtype_t = 8; /* Haswell feature subset */

//  Mips subtypes.
//

pub const CPU_SUBTYPE_MIPS_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_MIPS_R2300: cpu_subtype_t = 1;
pub const CPU_SUBTYPE_MIPS_R2600: cpu_subtype_t = 2;
pub const CPU_SUBTYPE_MIPS_R2800: cpu_subtype_t = 3;
pub const CPU_SUBTYPE_MIPS_R2000A: cpu_subtype_t = 4; /* pmax */
pub const CPU_SUBTYPE_MIPS_R2000: cpu_subtype_t = 5;
pub const CPU_SUBTYPE_MIPS_R3000A: cpu_subtype_t = 6; /* 3max */
pub const CPU_SUBTYPE_MIPS_R3000: cpu_subtype_t = 7;

//  MC98000 (PowerPC; subtypes
//
pub const CPU_SUBTYPE_MC98000_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_MC98601: cpu_subtype_t = 1;

//  HPPA subtypes for Hewlett-Packard HP-PA family of
//  risc processors. Port by NeXT to 700 series.
//

pub const CPU_SUBTYPE_HPPA_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_HPPA_7100: cpu_subtype_t = 0; /* compat */
pub const CPU_SUBTYPE_HPPA_7100LC: cpu_subtype_t = 1;

//  MC88000 subtypes.
//
pub const CPU_SUBTYPE_MC88000_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_MC88100: cpu_subtype_t = 1;
pub const CPU_SUBTYPE_MC88110: cpu_subtype_t = 2;

//  SPARC subtypes
//
pub const CPU_SUBTYPE_SPARC_ALL: cpu_subtype_t = 0;

//  I860 subtypes
//
pub const CPU_SUBTYPE_I860_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_I860_860: cpu_subtype_t = 1;

//  PowerPC subtypes
//
pub const CPU_SUBTYPE_POWERPC_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_POWERPC_601: cpu_subtype_t = 1;
pub const CPU_SUBTYPE_POWERPC_602: cpu_subtype_t = 2;
pub const CPU_SUBTYPE_POWERPC_603: cpu_subtype_t = 3;
pub const CPU_SUBTYPE_POWERPC_603E: cpu_subtype_t = 4;
pub const CPU_SUBTYPE_POWERPC_603EV: cpu_subtype_t = 5;
pub const CPU_SUBTYPE_POWERPC_604: cpu_subtype_t = 6;
pub const CPU_SUBTYPE_POWERPC_604E: cpu_subtype_t = 7;
pub const CPU_SUBTYPE_POWERPC_620: cpu_subtype_t = 8;
pub const CPU_SUBTYPE_POWERPC_750: cpu_subtype_t = 9;
pub const CPU_SUBTYPE_POWERPC_7400: cpu_subtype_t = 10;
pub const CPU_SUBTYPE_POWERPC_7450: cpu_subtype_t = 11;
pub const CPU_SUBTYPE_POWERPC_970: cpu_subtype_t = 100;

//  ARM subtypes
//
pub const CPU_SUBTYPE_ARM_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_ARM_V4T: cpu_subtype_t = 5;
pub const CPU_SUBTYPE_ARM_V6: cpu_subtype_t = 6;
pub const CPU_SUBTYPE_ARM_V5TEJ: cpu_subtype_t = 7;
pub const CPU_SUBTYPE_ARM_XSCALE: cpu_subtype_t = 8;
pub const CPU_SUBTYPE_ARM_V7: cpu_subtype_t = 9;
pub const CPU_SUBTYPE_ARM_V7F: cpu_subtype_t = 10; /* Cortex A9 */
pub const CPU_SUBTYPE_ARM_V7S: cpu_subtype_t = 11; /* Swift */
pub const CPU_SUBTYPE_ARM_V7K: cpu_subtype_t = 12;
pub const CPU_SUBTYPE_ARM_V6M: cpu_subtype_t = 14; /* Not meant to be run under xnu */
pub const CPU_SUBTYPE_ARM_V7M: cpu_subtype_t = 15; /* Not meant to be run under xnu */
pub const CPU_SUBTYPE_ARM_V7EM: cpu_subtype_t = 16; /* Not meant to be run under xnu */

pub const CPU_SUBTYPE_ARM_V8: cpu_subtype_t = 13;

//  ARM64 subtypes
//
pub const CPU_SUBTYPE_ARM64_ALL: cpu_subtype_t = 0;
pub const CPU_SUBTYPE_ARM64_V8: cpu_subtype_t = 1;

fn get_arch_flags() -> &'static HashMap<&'static str, (cpu_type_t, cpu_subtype_t)> {
    lazy_static! {
        static ref ARCH_FLAGS : HashMap<&'static str, (cpu_type_t, cpu_subtype_t)> = {
            let mut m = HashMap::new();

            m.insert("any",    (CPU_TYPE_ANY,     CPU_SUBTYPE_MULTIPLE ));
            m.insert("little", (CPU_TYPE_ANY,     CPU_SUBTYPE_LITTLE_ENDIAN ));
            m.insert("big",    (CPU_TYPE_ANY,     CPU_SUBTYPE_BIG_ENDIAN ));

        /* 64-bit Mach-O architectures */

            /* architecture families */
            m.insert("ppc64",     (CPU_TYPE_POWERPC64, CPU_SUBTYPE_POWERPC_ALL ));
            m.insert("x86_64",    (CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_ALL ));
            m.insert("x86_64h",   (CPU_TYPE_X86_64, CPU_SUBTYPE_X86_64_H ));
            m.insert("arm64",     (CPU_TYPE_ARM64,     CPU_SUBTYPE_ARM64_ALL ));
            /* specific architecture implementations */
            m.insert("ppc970-64", (CPU_TYPE_POWERPC64, CPU_SUBTYPE_POWERPC_970 ));

        /* 32-bit Mach-O architectures */

            /* architecture families */
            m.insert("ppc",    (CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_ALL ));
            m.insert("i386",   (CPU_TYPE_I386,    CPU_SUBTYPE_I386_ALL ));
            m.insert("m68k",   (CPU_TYPE_MC680X0, CPU_SUBTYPE_MC680X0_ALL ));
            m.insert("hppa",   (CPU_TYPE_HPPA,    CPU_SUBTYPE_HPPA_ALL ));
            m.insert("sparc",  (CPU_TYPE_SPARC,   CPU_SUBTYPE_SPARC_ALL ));
            m.insert("m88k",   (CPU_TYPE_MC88000, CPU_SUBTYPE_MC88000_ALL ));
            m.insert("i860",   (CPU_TYPE_I860,    CPU_SUBTYPE_I860_ALL ));
            m.insert("arm",    (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_ALL ));
            /* specific architecture implementations */
            m.insert("ppc601", (CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_601 ));
            m.insert("ppc603",(CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_603 ));
            m.insert("ppc603e",(CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_603E ));
            m.insert("ppc603ev",(CPU_TYPE_POWERPC,CPU_SUBTYPE_POWERPC_603EV ));
            m.insert("ppc604", (CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_604 ));
            m.insert("ppc604e",(CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_604E ));
            m.insert("ppc750", (CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_750 ));
            m.insert("ppc7400",(CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_7400 ));
            m.insert("ppc7450",(CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_7450 ));
            m.insert("ppc970", (CPU_TYPE_POWERPC, CPU_SUBTYPE_POWERPC_970 ));
            m.insert("i486",   (CPU_TYPE_I386,    CPU_SUBTYPE_486 ));
            m.insert("i486SX", (CPU_TYPE_I386,    CPU_SUBTYPE_486SX ));
            m.insert("pentium",(CPU_TYPE_I386,    CPU_SUBTYPE_PENT )); /* same as i586 */
            m.insert("i586",   (CPU_TYPE_I386,    CPU_SUBTYPE_586 ));
            m.insert("pentpro",( CPU_TYPE_I386, CPU_SUBTYPE_PENTPRO )); /* same as i686 */
            m.insert("i686",   (CPU_TYPE_I386, CPU_SUBTYPE_PENTPRO ));
            m.insert("pentIIm3",(CPU_TYPE_I386, CPU_SUBTYPE_PENTII_M3 ));
            m.insert("pentIIm5",(CPU_TYPE_I386, CPU_SUBTYPE_PENTII_M5 ));
            m.insert("pentium4",(CPU_TYPE_I386, CPU_SUBTYPE_PENTIUM_4 ));
            m.insert("m68030", (CPU_TYPE_MC680X0, CPU_SUBTYPE_MC68030_ONLY ));
            m.insert("m68040", (CPU_TYPE_MC680X0, CPU_SUBTYPE_MC68040 ));
            m.insert("hppa7100LC",( CPU_TYPE_HPPA,  CPU_SUBTYPE_HPPA_7100LC ));
            m.insert("armv4t", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V4T));
            m.insert("armv5",  (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V5TEJ));
            m.insert("xscale", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_XSCALE));
            m.insert("armv6",  (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V6 ));
            m.insert("armv6m", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V6M ));
            m.insert("armv7",  (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V7 ));
            m.insert("armv7f", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V7F ));
            m.insert("armv7s", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V7S ));
            m.insert("armv7k", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V7K ));
            m.insert("armv7m", (CPU_TYPE_ARM,     CPU_SUBTYPE_ARM_V7M ));
            m.insert("armv7em",( CPU_TYPE_ARM,    CPU_SUBTYPE_ARM_V7EM ));
            m.insert("arm64v8",(CPU_TYPE_ARM64,   CPU_SUBTYPE_ARM64_V8 ));

            m
        };
    }

    &ARCH_FLAGS
}

pub fn get_arch_from_flag(name: &str) -> Option<&(cpu_type_t, cpu_subtype_t)> {
    get_arch_flags().get(&name)
}

pub fn get_arch_name_from_types(cputype: cpu_type_t, subtype: cpu_subtype_t) -> Option<&'static str> {
    for (name, &(cpu_type, cpu_subtype)) in get_arch_flags() {
        if cpu_type == cputype && get_cpu_subtype_type(cpu_subtype) == get_cpu_subtype_type(subtype) {
            return Some(name);
        }
    }

    None
}

// Constant for the magic field of the mach_header (32-bit architectures)
//

/// the mach magic number
pub const MH_MAGIC: u32 = 0xfeed_face;
/// `NXSwapInt(MH_MAGIC)`
pub const MH_CIGAM: u32 = 0xcefa_edfe;

// Constant for the magic field of the mach_header_64 (64-bit architectures)
//

/// the 64-bit mach magic number
pub const MH_MAGIC_64: u32 = 0xfeed_facf;
/// `NXSwapInt(MH_MAGIC_64)`
pub const MH_CIGAM_64: u32 = 0xcffa_edfe;

pub const FAT_MAGIC: u32 = 0xcafe_babe;
pub const FAT_CIGAM: u32 = 0xbeba_feca; /* NXSwapLong(FAT_MAGIC) */

pub const ARMAG: &[u8] = b"!<arch>\n";

pub const AR_EFMT1: &str = "#1/"; /* extended format #1 */

pub const SYMDEF: &str = "__.SYMDEF";
pub const SYMDEF_SORTED: &str = "__.SYMDEF SORTED";

// The layout of the file depends on the filetype.  For all but the MH_OBJECT
// file type the segments are padded out and aligned on a segment alignment
// boundary for efficient demand pageing.  The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
// MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
// of their first segment.
//
// The file type MH_OBJECT is a compact format intended as output of the
// assembler and input (and possibly output) of the link editor (the .o
// format).  All sections are in one unnamed segment with no segment padding.
// This format is used as an executable format when the file is so small the
// segment padding greatly increases its size.
//
// The file type MH_PRELOAD is an executable format intended for things that
// are not executed under the kernel (proms, stand alones, kernels, etc).  The
// format can be executed under the kernel but may demand paged it and not
// preload it before execution.
//
// A core file is in MH_CORE format and can be any in an arbritray legal
// Mach-O file.
//
// Constants for the filetype field of the mach_header
//

/// relocatable object file
pub const MH_OBJECT: u32 = 0x1;
/// demand paged executable file
pub const MH_EXECUTE: u32 = 0x2;
/// fixed VM shared library file
pub const MH_FVMLIB: u32 = 0x3;
/// core file
pub const MH_CORE: u32 = 0x4;
/// preloaded executable file
pub const MH_PRELOAD: u32 = 0x5;
/// dynamically bound shared library
pub const MH_DYLIB: u32 = 0x6;
/// dynamic link editor
pub const MH_DYLINKER: u32 = 0x7;
/// dynamically bound bundle file
pub const MH_BUNDLE: u32 = 0x8;
/// shared library stub for static linking only, no section contents
pub const MH_DYLIB_STUB: u32 = 0x9;
/// companion file with only debug sections
pub const MH_DSYM: u32 = 0xa;
/// `x86_64` kexts
pub const MH_KEXT_BUNDLE: u32 = 0xb;

// Constants for the flags field of the mach_header
//

/// the object file has no undefined references
pub const MH_NOUNDEFS: u32 = 0x1;
/// the object file is the output of an incremental link
/// against a base file and can't be link edited again
pub const MH_INCRLINK: u32 = 0x2;
// the object file is input for the dynamic linker and can't be staticly link edited again
pub const MH_DYLDLINK: u32 = 0x4;
// the object file's undefined references are bound by the dynamic linker when loaded.
pub const MH_BINDATLOAD: u32 = 0x8;
/// the file has its dynamic undefined references prebound.
pub const MH_PREBOUND: u32 = 0x10;
/// the file has its read-only and read-write segments split
pub const MH_SPLIT_SEGS: u32 = 0x20;
/// the shared library init routine is to be run lazily
/// via catching memory faults to its writeable segments (obsolete)
pub const MH_LAZY_INIT: u32 = 0x40;
/// the image is using two-level name space bindings
pub const MH_TWOLEVEL: u32 = 0x80;
/// the executable is forcing all images to use flat name space bindings
pub const MH_FORCE_FLAT: u32 = 0x100;
/// this umbrella guarantees no multiple defintions of symbols
/// in its sub-images so the two-level namespace hints can always be used.
pub const MH_NOMULTIDEFS: u32 = 0x200;
/// do not have dyld notify the prebinding agent about this executable
pub const MH_NOFIXPREBINDING: u32 = 0x400;
/// the binary is not prebound but can have its prebinding redone.
/// only used when `MH_PREBOUND` is not set.
pub const MH_PREBINDABLE: u32 = 0x800;
/// indicates that this binary binds to all two-level namespace modules of its dependent libraries.
/// only used when `MH_PREBINDABLE` and `MH_TWOLEVEL` are both set.
pub const MH_ALLMODSBOUND: u32 = 0x1000;
/// safe to divide up the sections into sub-sections via symbols for dead code stripping
pub const MH_SUBSECTIONS_VIA_SYMBOLS: u32 = 0x2000;
/// the binary has been canonicalized via the unprebind operation
pub const MH_CANONICAL: u32 = 0x4000;
/// the final linked image contains external weak symbols
pub const MH_WEAK_DEFINES: u32 = 0x8000;
/// the final linked image uses weak symbols
pub const MH_BINDS_TO_WEAK: u32 = 0x0001_0000;
/// When this bit is set, all stacks in the task will be given stack execution privilege.
/// Only used in `MH_EXECUTE` filetypes.
pub const MH_ALLOW_STACK_EXECUTION: u32 = 0x0002_0000;
/// When this bit is set, the binary declares it is safe
/// for use in processes with uid zero
pub const MH_ROOT_SAFE: u32 = 0x0004_0000;
/// When this bit is set, the binary declares it is safe
/// for use in processes when issetugid() is true
pub const MH_SETUID_SAFE: u32 = 0x0008_0000;
/// When this bit is set on a dylib, the static linker does not need to examine dependent dylibs
/// to see if any are re-exported
pub const MH_NO_REEXPORTED_DYLIBS: u32 = 0x0010_0000;
/// When this bit is set, the OS will load the main executable at a random address.
/// Only used in `MH_EXECUTE` filetypes.
pub const MH_PIE: u32 = 0x0020_0000;
/// Only for use on dylibs.  When linking against a dylib that has this bit set,
/// the static linker will automatically not create a `LC_LOAD_DYLIB` load command
/// to the dylib if no symbols are being referenced from the dylib.
pub const MH_DEAD_STRIPPABLE_DYLIB: u32 = 0x0040_0000;
/// Contains a section of type `S_THREAD_LOCAL_VARIABLES`
pub const MH_HAS_TLV_DESCRIPTORS: u32 = 0x0080_0000;
/// When this bit is set, the OS will run the main executable
/// with a non-executable heap even on platforms (e.g. i386)
/// that don't require it. Only used in `MH_EXECUTE` filetypes.
pub const MH_NO_HEAP_EXECUTION: u32 = 0x0100_0000;
/// The code was linked for use in an application extension.
pub const MH_APP_EXTENSION_SAFE: u32 = 0x0200_0000;

// After MacOS X 10.1 when a new load command is added that is required to be
// understood by the dynamic linker for the image to execute properly the
// `LC_REQ_DYLD` bit will be or'ed into the load command constant.  If the dynamic
// linker sees such a load command it it does not understand will issue a
// "unknown load command required for execution" error and refuse to use the
// image.  Other load commands without this bit that are not understood will
// simply be ignored.
//
pub const LC_REQ_DYLD: u32 = 0x8000_0000;

// Constants for the cmd field of all load commands, the type
// segment of this file to be mapped

pub const LC_SEGMENT: u32 = 0x1;
/// link-edit stab symbol table info
pub const LC_SYMTAB: u32 = 0x2;
/// link-edit gdb symbol table info (obsolete)
pub const LC_SYMSEG: u32 = 0x3;
/// thread
pub const LC_THREAD: u32 = 0x4;
/// unix thread (includes a stack)
pub const LC_UNIXTHREAD: u32 = 0x5;
/// load a specified fixed VM shared library
pub const LC_LOADFVMLIB: u32 = 0x6;
/// fixed VM shared library identification
pub const LC_IDFVMLIB: u32 = 0x7;
/// object identification info (obsolete)
pub const LC_IDENT: u32 = 0x8;
/// fixed VM file inclusion (internal use)
pub const LC_FVMFILE: u32 = 0x9;
/// prepage command (internal use)
pub const LC_PREPAGE: u32 = 0xa;
/// dynamic link-edit symbol table info
pub const LC_DYSYMTAB: u32 = 0xb;
/// load a dynamically linked shared library
pub const LC_LOAD_DYLIB: u32 = 0xc;
/// dynamically linked shared lib ident
pub const LC_ID_DYLIB: u32 = 0xd;
/// load a dynamic linker
pub const LC_LOAD_DYLINKER: u32 = 0xe;
/// dynamic linker identification
pub const LC_ID_DYLINKER: u32 = 0xf;
/// modules prebound for a dynamically
pub const LC_PREBOUND_DYLIB: u32 = 0x10;

// linked shared library
//
// image routines

pub const LC_ROUTINES: u32 = 0x11;
/// sub framework
pub const LC_SUB_FRAMEWORK: u32 = 0x12;
/// sub umbrella
pub const LC_SUB_UMBRELLA: u32 = 0x13;
/// sub client
pub const LC_SUB_CLIENT: u32 = 0x14;
/// sub library
pub const LC_SUB_LIBRARY: u32 = 0x15;
/// two-level namespace lookup hints
pub const LC_TWOLEVEL_HINTS: u32 = 0x16;
/// prebind checksum
pub const LC_PREBIND_CKSUM: u32 = 0x17;

// load a dynamically linked shared library that is allowed to be missing
// (all symbols are weak imported).
//
pub const LC_LOAD_WEAK_DYLIB: u32 = (0x18 | LC_REQ_DYLD);
/// 64-bit segment of this file to be mapped
pub const LC_SEGMENT_64: u32 = 0x19;
/// 64-bit image routines
pub const LC_ROUTINES_64: u32 = 0x1a;
/// the uuid
pub const LC_UUID: u32 = 0x1b;
/// runpath additions
pub const LC_RPATH: u32 = (0x1c | LC_REQ_DYLD);
/// local of code signature
pub const LC_CODE_SIGNATURE: u32 = 0x1d;
/// local of info to split segments
pub const LC_SEGMENT_SPLIT_INFO: u32 = 0x1e;
/// load and re-export dylib
pub const LC_REEXPORT_DYLIB: u32 = (0x1f | LC_REQ_DYLD);
/// delay load of dylib until first use
pub const LC_LAZY_LOAD_DYLIB: u32 = 0x20;
/// encrypted segment information
pub const LC_ENCRYPTION_INFO: u32 = 0x21;
/// compressed dyld information
pub const LC_DYLD_INFO: u32 = 0x22;
/// compressed dyld information only
pub const LC_DYLD_INFO_ONLY: u32 = (0x22 | LC_REQ_DYLD);
/// load upward dylib
pub const LC_LOAD_UPWARD_DYLIB: u32 = (0x23 | LC_REQ_DYLD);
/// build for `MacOSX` min OS version
pub const LC_VERSION_MIN_MACOSX: u32 = 0x24;
/// build for `iPhoneOS` min OS version
pub const LC_VERSION_MIN_IPHONEOS: u32 = 0x25;
/// compressed table of function start addresses
pub const LC_FUNCTION_STARTS: u32 = 0x26;
/// string for dyld to treat like environment variable
pub const LC_DYLD_ENVIRONMENT: u32 = 0x27;
/// replacement for `LC_UNIXTHREAD`
pub const LC_MAIN: u32 = (0x28 | LC_REQ_DYLD);
/// table of non-instructions in __text
pub const LC_DATA_IN_CODE: u32 = 0x29;
/// source version used to build binary
pub const LC_SOURCE_VERSION: u32 = 0x2A;
/// Code signing DRs copied from linked dylibs
pub const LC_DYLIB_CODE_SIGN_DRS: u32 = 0x2B;
/// 64-bit encrypted segment information
pub const LC_ENCRYPTION_INFO_64: u32 = 0x2C;
/// linker options in `MH_OBJECT` files
pub const LC_LINKER_OPTION: u32 = 0x2D;
/// optimization hints in `MH_OBJECT` files
pub const LC_LINKER_OPTIMIZATION_HINT: u32 = 0x2E;
/// build for `AppleTV` min OS version
pub const LC_VERSION_MIN_TVOS: u32 = 0x2F;
/// build for Watch min OS version
pub const LC_VERSION_MIN_WATCHOS: u32 = 0x30;
/// arbitrary data included within a Mach-O file
pub const LC_NOTE: u32 = 0x31;
/// build for platform min OS version
pub const LC_BUILD_VERSION: u32 = 0x32;

bitflags! {
    /// Constants for the flags field of the segment_command
    pub struct SegmentFlags: u32 {
        /// the file contents for this segment is for the high part of the VM space,
        /// the low part is zero filled (for stacks in core files)
        const SG_HIGHVM = 0x1;
        /// this segment is the VM that is allocated by a fixed VM library,
        /// for overlap checking in the link editor
        const SG_FVMLIB = 0x2;
        /// this segment has nothing that was relocated in it and nothing relocated to it,
        /// that is it maybe safely replaced without relocation
        const SG_NORELOC = 0x4;
        /// This segment is protected.  If the segment starts at file offset 0,
        /// the first page of the segment is not protected.
        /// All other pages of the segment are protected.
        const SG_PROTECTED_VERSION_1 = 0x8;
    }
}

// The flags field of a section structure is separated into two parts a section
// type and section attributes.  The section types are mutually exclusive (it
// can only have one type) but the section attributes are not (it may have more
// than one attribute).
//
pub const SECTION_TYPE: u32 = 0x0000_00ff; /* 256 section types */
pub const SECTION_ATTRIBUTES: u32 = 0xffff_ff00; /*  24 section attributes */

// Constants for the type of a section

/// regular section
pub const S_REGULAR: u32 = 0x0;
/// zero fill on demand section
pub const S_ZEROFILL: u32 = 0x1;
/// section with only literal C strings
pub const S_CSTRING_LITERALS: u32 = 0x2;
/// section with only 4 byte literals
pub const S_4BYTE_LITERALS: u32 = 0x3;
/// section with only 8 byte literals
pub const S_8BYTE_LITERALS: u32 = 0x4;
/// section with only pointers to literals
pub const S_LITERAL_POINTERS: u32 = 0x5;

// For the two types of symbol pointers sections and the symbol stubs section
// they have indirect symbol table entries.  For each of the entries in the
// section the indirect symbol table entries, in corresponding order in the
// indirect symbol table, start at the index stored in the reserved1 field
// of the section structure.  Since the indirect symbol table entries
// correspond to the entries in the section the number of indirect symbol table
// entries is inferred from the size of the section divided by the size of the
// entries in the section.  For symbol pointers sections the size of the entries
// in the section is 4 bytes and for symbol stubs sections the byte size of the
// stubs is stored in the reserved2 field of the section structure.
//

/// section with only non-lazy symbol pointers
pub const S_NON_LAZY_SYMBOL_POINTERS: u32 = 0x6;
/// section with only lazy symbol pointers
pub const S_LAZY_SYMBOL_POINTERS: u32 = 0x7;
/// section with only symbol stubs, byte size of stub in the reserved2 field
pub const S_SYMBOL_STUBS: u32 = 0x8;
/// section with only function pointers for initialization
pub const S_MOD_INIT_FUNC_POINTERS: u32 = 0x9;
/// section with only function pointers for termination
pub const S_MOD_TERM_FUNC_POINTERS: u32 = 0xa;
/// section contains symbols that are to be coalesced
pub const S_COALESCED: u32 = 0xb;
/// zero fill on demand section that can be larger than 4 gigabytes)
pub const S_GB_ZEROFILL: u32 = 0xc;
/// section with only pairs of function pointers for interposing

pub const S_INTERPOSING: u32 = 0xd;
/// section with only 16 byte literals
pub const S_16BYTE_LITERALS: u32 = 0xe;
/// section contains `DTrace` Object Format
pub const S_DTRACE_DOF: u32 = 0xf;
/// section with only lazy symbol pointers to lazy loaded dylibs
pub const S_LAZY_DYLIB_SYMBOL_POINTERS: u32 = 0x10;

// Section types to support thread local variables
//

/// template of initial values for TLVs
pub const S_THREAD_LOCAL_REGULAR: u32 = 0x11;
/// template of initial values for TLVs
pub const S_THREAD_LOCAL_ZEROFILL: u32 = 0x12;
/// TLV descriptors
pub const S_THREAD_LOCAL_VARIABLES: u32 = 0x13;
/// pointers to TLV descriptors
pub const S_THREAD_LOCAL_VARIABLE_POINTERS: u32 = 0x14;
/// functions to call to initialize TLV values
pub const S_THREAD_LOCAL_INIT_FUNCTION_POINTERS: u32 = 0x15;

bitflags! {
    /// Constants for the section attributes part of the flags field of a section structure.
    pub struct SectionAttributes: u32 {
        /// User setable attributes
        const SECTION_ATTRIBUTES_USR = 0xff00_0000;
        /// section contains only true machine instructions
        const S_ATTR_PURE_INSTRUCTIONS = 0x8000_0000;
        /// section contains coalesced symbols that are not to be in a ranlib table of contents
        const S_ATTR_NO_TOC = 0x4000_0000;
        /// ok to strip static symbols in this section in files with the MH_DYLDLINK flag
        const S_ATTR_STRIP_STATIC_SYMS = 0x2000_0000;
        /// no dead stripping
        const S_ATTR_NO_DEAD_STRIP = 0x1000_0000;
        /// blocks are live if they reference live blocks
        const S_ATTR_LIVE_SUPPORT = 0x0800_0000;
        /// Used with i386 code stubs written on by dyld
        const S_ATTR_SELF_MODIFYING_CODE = 0x0400_0000;

        // If a segment contains any sections marked with S_ATTR_DEBUG then all
        // sections in that segment must have this attribute.  No section other than
        // a section marked with this attribute may reference the contents of this
        // section.  A section with this attribute may contain no symbols and must have
        // a section type S_REGULAR.  The static linker will not copy section contents
        // from sections with this attribute into its output file.  These sections
        // generally contain DWARF debugging info.
        //

        /// a debug section
        const S_ATTR_DEBUG = 0x0200_0000;
        /// system setable attributes
        const SECTION_ATTRIBUTES_SYS = 0x00ff_ff00;
        /// section contains some machine instructions
        const S_ATTR_SOME_INSTRUCTIONS = 0x0000_0400;
        /// section has external relocation entries
        const S_ATTR_EXT_RELOC = 0x0000_0200;
        /// section has local relocation entries
        const S_ATTR_LOC_RELOC = 0x0000_0100;
    }
}

// The names of segments and sections in them are mostly meaningless to the
// link-editor.  But there are few things to support traditional UNIX
// executables that require the link-editor and assembler to use some names
// agreed upon by convention.
//
// The initial protection of the "__TEXT" segment has write protection turned
// off (not writeable).
//
// The link-editor will allocate common symbols at the end of the "__common"
// section in the "__DATA" segment.  It will create the section and segment
// if needed.
//

// The currently known segment names and the section names in those segments

/// the pagezero segment which has no protections and catches NULL references for `MH_EXECUTE` files
pub static SEG_PAGEZERO: &str = "__PAGEZERO";

/// the tradition UNIX text segment
pub static SEG_TEXT: &str = "__TEXT";
/// the real text part of the text
pub static SECT_TEXT: &str = "__text";

// section no headers, and no padding
//

/// the fvmlib initialization section
pub static SECT_FVMLIB_INIT0: &str = "__fvmlib_init0";
/// the section following the fvmlib initialization section
pub static SECT_FVMLIB_INIT1: &str = "__fvmlib_init1";

/// the tradition UNIX data segment
pub static SEG_DATA: &str = "__DATA";
/// the real initialized data section no padding, no bss overlap
pub static SECT_DATA: &str = "__data";
/// the real uninitialized data section no padding
pub static SECT_BSS: &str = "__bss";
/// the section common symbols are allocated in by the link editor
pub static SECT_COMMON: &str = "__common";

/// objective-C runtime segment
pub static SEG_OBJC: &str = "__OBJC";
/// symbol table
pub static SECT_OBJC_SYMBOLS: &str = "__symbol_table";
/// module information
pub static SECT_OBJC_MODULES: &str = "__module_info";
/// string table
pub static SECT_OBJC_STRINGS: &str = "__selector_strs";
/// string table
pub static SECT_OBJC_REFS: &str = "__selector_refs";

/// the icon segment
pub static SEG_ICON: &str = "__ICON";
/// the icon headers
pub static SECT_ICON_HEADER: &str = "__header";
/// the icons in tiff format
pub static SECT_ICON_TIFF: &str = "__tiff";

/// the segment containing all structs created and maintained by the link editor.
/// Created with -seglinkedit option to ld(1) for `MH_EXECUTE` and `FVMLIB` file types only
pub static SEG_LINKEDIT: &str = "__LINKEDIT";

/// the unix stack segment
pub static SEG_UNIXSTACK: &str = "__UNIXSTACK";

/// the segment for the self (dyld) modifing code stubs that has read, write and execute permissions
pub static SEG_IMPORT: &str = "__IMPORT";

// An indirect symbol table entry is simply a 32bit index into the symbol table
// to the symbol that the pointer or stub is refering to.  Unless it is for a
// non-lazy symbol pointer section for a defined symbol which strip(1) as
// removed.  In which case it has the value `INDIRECT_SYMBOL_LOCAL`.  If the
// symbol was also absolute `INDIRECT_SYMBOL_ABS` is or'ed with that.
//
pub const INDIRECT_SYMBOL_LOCAL: u32 = 0x8000_0000;
pub const INDIRECT_SYMBOL_ABS: u32 = 0x4000_0000;

// The following are used to encode rebasing information
//

pub const REBASE_TYPE_POINTER: u8 = 1;
pub const REBASE_TYPE_TEXT_ABSOLUTE32: u8 = 2;
pub const REBASE_TYPE_TEXT_PCREL32: u8 = 3;

pub const REBASE_OPCODE_MASK: u8 = 0xF0;
pub const REBASE_IMMEDIATE_MASK: u8 = 0x0F;

pub const REBASE_OPCODE_DONE: u8 = 0x00;
pub const REBASE_OPCODE_SET_TYPE_IMM: u8 = 0x10;
pub const REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: u8 = 0x20;
pub const REBASE_OPCODE_ADD_ADDR_ULEB: u8 = 0x30;
pub const REBASE_OPCODE_ADD_ADDR_IMM_SCALED: u8 = 0x40;
pub const REBASE_OPCODE_DO_REBASE_IMM_TIMES: u8 = 0x50;
pub const REBASE_OPCODE_DO_REBASE_ULEB_TIMES: u8 = 0x60;
pub const REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB: u8 = 0x70;
pub const REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB: u8 = 0x80;

// The following are used to encode binding information
//
pub const BIND_TYPE_POINTER: u8 = 1;
pub const BIND_TYPE_TEXT_ABSOLUTE32: u8 = 2;
pub const BIND_TYPE_TEXT_PCREL32: u8 = 3;

pub const BIND_SPECIAL_DYLIB_SELF: isize = 0;
pub const BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE: isize = -1;
pub const BIND_SPECIAL_DYLIB_FLAT_LOOKUP: isize = -2;

pub const BIND_SYMBOL_FLAGS_WEAK_IMPORT: u8 = 0x1;
pub const BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION: u8 = 0x8;

pub const BIND_OPCODE_MASK: u8 = 0xF0;
pub const BIND_IMMEDIATE_MASK: u8 = 0x0F;
pub const BIND_OPCODE_DONE: u8 = 0x00;
pub const BIND_OPCODE_SET_DYLIB_ORDINAL_IMM: u8 = 0x10;
pub const BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB: u8 = 0x20;
pub const BIND_OPCODE_SET_DYLIB_SPECIAL_IMM: u8 = 0x30;
pub const BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM: u8 = 0x40;
pub const BIND_OPCODE_SET_TYPE_IMM: u8 = 0x50;
pub const BIND_OPCODE_SET_ADDEND_SLEB: u8 = 0x60;
pub const BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: u8 = 0x70;
pub const BIND_OPCODE_ADD_ADDR_ULEB: u8 = 0x80;
pub const BIND_OPCODE_DO_BIND: u8 = 0x90;
pub const BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: u8 = 0xA0;
pub const BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: u8 = 0xB0;
pub const BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: u8 = 0xC0;

pub const EXPORT_SYMBOL_FLAGS_KIND_MASK: u8 = 0x03;
pub const EXPORT_SYMBOL_FLAGS_KIND_REGULAR: u8 = 0x00;
pub const EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL: u8 = 0x01;
pub const EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE: u8 = 0x02;

bitflags! {
    /// The following are used on the flags byte of a terminal node in the export information.
    pub struct ExportSymbolFlags: u32 {
        const EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION        = 0x04;
        const EXPORT_SYMBOL_FLAGS_REEXPORT               = 0x08;
        const EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER      = 0x10;
    }
}

pub const DICE_KIND_DATA: u16 = 0x0001;
pub const DICE_KIND_JUMP_TABLE8: u16 = 0x0002;
pub const DICE_KIND_JUMP_TABLE16: u16 = 0x0003;
pub const DICE_KIND_JUMP_TABLE32: u16 = 0x0004;
pub const DICE_KIND_ABS_JUMP_TABLE32: u16 = 0x0005;

/// global symbol: `name,,NO_SECT,type,0`
pub const N_GSYM: u8 = 0x20;
/// procedure name (f77 kludge): `name,,NO_SECT,0,0`
pub const N_FNAME: u8 = 0x22;
/// procedure: `name,,n_sect,linenumber,address`
pub const N_FUN: u8 = 0x24;
/// static symbol: `name,,n_sect,type,address`
pub const N_STSYM: u8 = 0x26;
/// .lcomm symbol: `name,,n_sect,type,address`
pub const N_LCSYM: u8 = 0x28;
/// begin nsect sym: `0,,n_sect,0,address`
pub const N_BNSYM: u8 = 0x2e;
/// AST file path: `name,,NO_SECT,0,0`
pub const N_AST: u8 = 0x32;
/// emitted with gcc2 compiled and in gcc source
pub const N_OPT: u8 = 0x3c;
/// register sym: `name,,NO_SECT,type,register`
pub const N_RSYM: u8 = 0x40;
/// src line: `0,,n_sect,linenumber,address`
pub const N_SLINE: u8 = 0x44;
/// end nsect `sym: 0,,n_sect,0,address`
pub const N_ENSYM: u8 = 0x4e;
/// structure elt: `name,,NO_SECT,type,struct_offset`
pub const N_SSYM: u8 = 0x60;
/// source file name: `name,,n_sect,0,address`
pub const N_SO: u8 = 0x64;
/// object file name: `name,,0,0,st_mtime`
pub const N_OSO: u8 = 0x66;
/// local sym: `name,,NO_SECT,type,offset`
pub const N_LSYM: u8 = 0x80;
/// include file beginning: `name,,NO_SECT,0,sum`
pub const N_BINCL: u8 = 0x82;
/// #included file name: `name,,n_sect,0,address`
pub const N_SOL: u8 = 0x84;
/// compiler parameters: `name,,NO_SECT,0,0`
pub const N_PARAMS: u8 = 0x86;
/// compiler version: `name,,NO_SECT,0,0`
pub const N_VERSION: u8 = 0x88;
/// compiler -O level: `name,,NO_SECT,0,0`
pub const N_OLEVEL: u8 = 0x8A;
/// parameter: `name,,NO_SECT,type,offset`
pub const N_PSYM: u8 = 0xa0;
/// include file end: `name,,NO_SECT,0,0`
pub const N_EINCL: u8 = 0xa2;
/// alternate entry: `name,,n_sect,linenumber,address`
pub const N_ENTRY: u8 = 0xa4;
/// left bracket: `0,,NO_SECT,nesting level,address`
pub const N_LBRAC: u8 = 0xc0;
/// deleted include file: `name,,NO_SECT,0,sum`
pub const N_EXCL: u8 = 0xc2;
/// right bracket: `0,,NO_SECT,nesting level,address`
pub const N_RBRAC: u8 = 0xe0;
/// begin common: `name,,NO_SECT,0,0`
pub const N_BCOMM: u8 = 0xe2;
/// end common: `name,,n_sect,0,0`
pub const N_ECOMM: u8 = 0xe4;
/// end common (local name): `0,,n_sect,0,address`
pub const N_ECOML: u8 = 0xe8;
/// second stab entry with length information
pub const N_LENG: u8 = 0xfe;
/// global pascal symbol: `name,,NO_SECT,subtype,line`
pub const N_PC: u8 = 0x30;

/// To support the lazy binding of undefined symbols in the dynamic link-editor,
/// the undefined symbols in the symbol table (the nlist structures) are marked
/// with the indication if the undefined reference is a lazy reference or
/// non-lazy reference.  If both a non-lazy reference and a lazy reference is
/// made to the same symbol the non-lazy reference takes precedence.  A reference
/// is lazy only when all references to that symbol are made through a symbol
/// pointer in a lazy symbol pointer section.
///
/// The implementation of marking nlist structures in the symbol table for
/// undefined symbols will be to use some of the bits of the `n_desc` field as a
/// reference type.  The mask `REFERENCE_TYPE` will be applied to the `n_desc` field
/// of an nlist structure for an undefined symbol to determine the type of
/// undefined reference (lazy or non-lazy).
///
/// The constants for the REFERENCE FLAGS are propagated to the reference table
/// in a shared library file.  In that case the constant for a defined symbol,
/// `REFERENCE_FLAG_DEFINED`, is also used.
///
/// Reference type bits of the `n_desc` field of undefined symbols
pub const REFERENCE_TYPE: u8 = 0x7;
// types of references
pub const REFERENCE_FLAG_UNDEFINED_NON_LAZY: u8 = 0;
pub const REFERENCE_FLAG_UNDEFINED_LAZY: u8 = 1;
pub const REFERENCE_FLAG_DEFINED: u8 = 2;
pub const REFERENCE_FLAG_PRIVATE_DEFINED: u8 = 3;
pub const REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY: u8 = 4;
pub const REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY: u8 = 5;

/// To simplify stripping of objects that use are used with the dynamic link
/// editor, the static link editor marks the symbols defined an object that are
/// referenced by a dynamicly bound object (dynamic shared libraries, bundles).
/// With this marking strip knows not to strip these symbols.
///
pub const REFERENCED_DYNAMICALLY: u16 = 0x0010;

// For images created by the static link editor with the -twolevel_namespace
// option in effect the flags field of the mach header is marked with
// MH_TWOLEVEL.  And the binding of the undefined references of the image are
// determined by the static link editor.  Which library an undefined symbol is
// bound to is recorded by the static linker in the high 8 bits of the `n_desc`
// field using the `SET_LIBRARY_ORDINAL` macro below.  The ordinal recorded
// references the libraries listed in the Mach-O's `LC_LOAD_DYLIB`,
// `LC_LOAD_WEAK_DYLIB`, `LC_REEXPORT_DYLIB`, `LC_LOAD_UPWARD_DYLIB`, and
// `LC_LAZY_LOAD_DYLIB`, etc. load commands in the order they appear in the
// headers.   The library ordinals start from 1.
// For a dynamic library that is built as a two-level namespace image the
// undefined references from module defined in another use the same nlist struct
// an in that case `SELF_LIBRARY_ORDINAL` is used as the library ordinal.  For
// defined symbols in all images they also must have the library ordinal set to
// `SELF_LIBRARY_ORDINAL`.  The `EXECUTABLE_ORDINAL` refers to the executable
// image for references from plugins that refer to the executable that loads
// them.
//
// The `DYNAMIC_LOOKUP_ORDINAL` is for undefined symbols in a two-level namespace
// image that are looked up by the dynamic linker with flat namespace semantics.
// This ordinal was added as a feature in Mac OS X 10.3 by reducing the
// value of `MAX_LIBRARY_ORDINAL` by one.  So it is legal for existing binaries
// or binaries built with older tools to have 0xfe (254) dynamic libraries.  In
// this case the ordinal value 0xfe (254) must be treated as a library ordinal
// for compatibility.
//
pub const SELF_LIBRARY_ORDINAL: u8 = 0x0;
pub const MAX_LIBRARY_ORDINAL: u8 = 0xfd;
pub const DYNAMIC_LOOKUP_ORDINAL: u8 = 0xfe;
pub const EXECUTABLE_ORDINAL: u8 = 0xff;

// The bit 0x0020 of the `n_desc` field is used for two non-overlapping purposes
// and has two different symbolic names, `N_NO_DEAD_STRIP` and `N_DESC_DISCARDED`.
//

/// The `N_NO_DEAD_STRIP` bit of the `n_desc` field only ever appears in a
/// relocatable .o file (`MH_OBJECT` filetype). And is used to indicate to the
/// static link editor it is never to dead strip the symbol.
///
pub const N_NO_DEAD_STRIP: u16 = 0x0020; /* symbol is not to be dead stripped */

/// The `N_DESC_DISCARDED` bit of the `n_desc` field never appears in linked image.
/// But is used in very rare cases by the dynamic link editor to mark an in
/// memory symbol as discared and longer used for linking.
///
pub const N_DESC_DISCARDED: u16 = 0x0020; /* symbol is discarded */

/// The `N_WEAK_REF` bit of the `n_desc` field indicates to the dynamic linker that
/// the undefined symbol is allowed to be missing and is to have the address of
/// zero when missing.
///
pub const N_WEAK_REF: u16 = 0x0040; /* symbol is weak referenced */

/// The `N_WEAK_DEF` bit of the `n_desc` field indicates to the static and dynamic
/// linkers that the symbol definition is weak, allowing a non-weak symbol to
/// also be used which causes the weak definition to be discared.  Currently this
/// is only supported for symbols in coalesed sections.
///
pub const N_WEAK_DEF: u16 = 0x0080; /* coalesed symbol is a weak definition */

/// The `N_REF_TO_WEAK` bit of the `n_desc` field indicates to the dynamic linker
/// that the undefined symbol should be resolved using flat namespace searching.
///
pub const N_REF_TO_WEAK: u16 = 0x0080; /* reference to a weak symbol */

/// The `N_ARM_THUMB_DEF` bit of the `n_desc` field indicates that the symbol is
/// a defintion of a Thumb function.
///
pub const N_ARM_THUMB_DEF: u16 = 0x0008; /* symbol is a Thumb function (ARM) */

/// The `N_SYMBOL_RESOLVER` bit of the `n_desc` field indicates that the
/// that the function is actually a resolver function and should
/// be called to get the address of the real function to use.
/// This bit is only available in .o files (`MH_OBJECT` filetype)
///
pub const N_SYMBOL_RESOLVER: u16 = 0x0100;

/// The `N_ALT_ENTRY` bit of the `n_desc` field indicates that the
/// symbol is pinned to the previous content.
///
pub const N_ALT_ENTRY: u16 = 0x0200;

/* Known values for the platform field above. */
pub const PLATFORM_MACOS: u32 = 1;
pub const PLATFORM_IOS: u32 = 2;
pub const PLATFORM_TVOS: u32 = 3;
pub const PLATFORM_WATCHOS: u32 = 4;
pub const PLATFORM_BRIDGEOS: u32 = 5;

/* Known values for the tool field above. */
pub const TOOL_CLANG: u32 = 1;
pub const TOOL_SWIFT: u32 = 2;
pub const TOOL_LD: u32 = 3;