1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//! A platform agnostic driver to interface with the LSM303DLHC (accelerometer + compass)
//!
//! This driver was built using [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://docs.rs/embedded-hal/~0.2
//!
//! # Examples
//!
//! You should find at least one example in the [f3] crate.
//!
//! [f3]: https://docs.rs/f3/~0.6

#![deny(missing_docs)]
#![deny(warnings)]
#![no_std]

extern crate cast;
extern crate embedded_hal as hal;
extern crate generic_array;

use core::mem;

use cast::u16;
use generic_array::typenum::consts::*;
use generic_array::{ArrayLength, GenericArray};
use hal::blocking::i2c::{Write, WriteRead};

mod accel;
mod mag;

/// LSM303DLHC driver
pub struct Lsm303dlhc<I2C> {
    i2c: I2C,
}

impl<I2C, E> Lsm303dlhc<I2C>
where
    I2C: WriteRead<Error = E> + Write<Error = E>,
{
    /// Creates a new driver from a I2C peripheral
    pub fn new(i2c: I2C) -> Result<Self, E> {
        let mut lsm303dlhc = Lsm303dlhc { i2c };

        // TODO reset all the registers / the device

        // configure the accelerometer to operate at 400 Hz
        lsm303dlhc.write_accel_register(accel::Register::CTRL_REG1_A, 0b0111_0_111)?;

        // configure the magnetometer to operate in continuous mode
        lsm303dlhc.write_mag_register(mag::Register::MR_REG_M, 0b00)?;

        // enable the temperature sensor
        lsm303dlhc.write_mag_register(mag::Register::CRA_REG_M, 0b0001000 | (1 << 7))?;

        Ok(lsm303dlhc)
    }

    /// Accelerometer measurements
    pub fn accel(&mut self) -> Result<I16x3, E> {
        let buffer: GenericArray<u8, U6> = self.read_accel_registers(accel::Register::OUT_X_L_A)?;

        Ok(I16x3 {
            x: (u16(buffer[0]) + (u16(buffer[1]) << 8)) as i16,
            y: (u16(buffer[2]) + (u16(buffer[3]) << 8)) as i16,
            z: (u16(buffer[4]) + (u16(buffer[5]) << 8)) as i16,
        })
    }

    /// Sets the accelerometer output data rate
    pub fn accel_odr(&mut self, odr: AccelOdr) -> Result<(), E> {
        self.modify_accel_register(accel::Register::CTRL_REG1_A, |r| {
            r & !(0b1111 << 4) | ((odr as u8) << 4)
        })
    }

    /// Magnetometer measurements
    pub fn mag(&mut self) -> Result<I16x3, E> {
        let buffer: GenericArray<u8, U6> = self.read_mag_registers(mag::Register::OUT_X_H_M)?;

        Ok(I16x3 {
            x: (u16(buffer[1]) + (u16(buffer[0]) << 8)) as i16,
            y: (u16(buffer[5]) + (u16(buffer[4]) << 8)) as i16,
            z: (u16(buffer[3]) + (u16(buffer[2]) << 8)) as i16,
        })
    }

    /// Sets the magnetometer output data rate
    pub fn mag_odr(&mut self, odr: MagOdr) -> Result<(), E> {
        self.modify_mag_register(mag::Register::CRA_REG_M, |r| {
            r & !(0b111 << 2) | ((odr as u8) << 2)
        })
    }

    /// Temperature sensor measurement
    ///
    /// - Resolution: 12-bit
    /// - Range: [-40, +85]
    pub fn temp(&mut self) -> Result<i16, E> {
        let temp_out_l = self.read_mag_register(mag::Register::TEMP_OUT_L_M)?;
        let temp_out_h = self.read_mag_register(mag::Register::TEMP_OUT_H_M)?;

        Ok(((u16(temp_out_l) + (u16(temp_out_h) << 8)) as i16) >> 4)
    }

    /// Changes the `sensitivity` of the accelerometer
    pub fn set_accel_sensitivity(&mut self, sensitivity: Sensitivity) -> Result<(), E> {
        self.modify_accel_register(accel::Register::CTRL_REG4_A, |r| {
            r & !(0b11 << 4) | (sensitivity.value() << 4)
        })
    }

    fn modify_accel_register<F>(&mut self, reg: accel::Register, f: F) -> Result<(), E>
    where
        F: FnOnce(u8) -> u8,
    {
        let r = self.read_accel_register(reg)?;
        self.write_accel_register(reg, f(r))?;
        Ok(())
    }

    fn modify_mag_register<F>(&mut self, reg: mag::Register, f: F) -> Result<(), E>
    where
        F: FnOnce(u8) -> u8,
    {
        let r = self.read_mag_register(reg)?;
        self.write_mag_register(reg, f(r))?;
        Ok(())
    }

    fn read_accel_registers<N>(&mut self, reg: accel::Register) -> Result<GenericArray<u8, N>, E>
    where
        N: ArrayLength<u8>,
    {
        let mut buffer: GenericArray<u8, N> = unsafe { mem::uninitialized() };

        {
            let buffer: &mut [u8] = &mut buffer;

            const MULTI: u8 = 1 << 7;
            self.i2c
                .write_read(accel::ADDRESS, &[reg.addr() | MULTI], buffer)?;
        }

        Ok(buffer)
    }

    fn read_accel_register(&mut self, reg: accel::Register) -> Result<u8, E> {
        self.read_accel_registers::<U1>(reg).map(|b| b[0])
    }

    fn read_mag_register(&mut self, reg: mag::Register) -> Result<u8, E> {
        let buffer: GenericArray<u8, U1> = self.read_mag_registers(reg)?;
        Ok(buffer[0])
    }

    // NOTE has weird address increment semantics; use only with `OUT_X_H_M`
    fn read_mag_registers<N>(&mut self, reg: mag::Register) -> Result<GenericArray<u8, N>, E>
    where
        N: ArrayLength<u8>,
    {
        let mut buffer: GenericArray<u8, N> = unsafe { mem::uninitialized() };

        {
            let buffer: &mut [u8] = &mut buffer;

            self.i2c.write_read(mag::ADDRESS, &[reg.addr()], buffer)?;
        }

        Ok(buffer)
    }

    fn write_accel_register(&mut self, reg: accel::Register, byte: u8) -> Result<(), E> {
        self.i2c.write(accel::ADDRESS, &[reg.addr(), byte])
    }

    fn write_mag_register(&mut self, reg: mag::Register, byte: u8) -> Result<(), E> {
        self.i2c.write(mag::ADDRESS, &[reg.addr(), byte])
    }
}

/// XYZ triple
#[derive(Debug)]
pub struct I16x3 {
    /// X component
    pub x: i16,
    /// Y component
    pub y: i16,
    /// Z component
    pub z: i16,
}

/// Accelerometer Output Data Rate
pub enum AccelOdr {
    /// 1 Hz
    Hz1 = 0b0001,
    /// 10 Hz
    Hz10 = 0b0010,
    /// 25 Hz
    Hz25 = 0b0011,
    /// 50 Hz
    Hz50 = 0b0100,
    /// 100 Hz
    Hz100 = 0b0101,
    /// 200 Hz
    Hz200 = 0b0110,
    /// 400 Hz
    Hz400 = 0b0111,
}

/// Magnetometer Output Data Rate
pub enum MagOdr {
    /// 0.75 Hz
    Hz0_75 = 0b000,
    /// 1.5 Hz
    Hz1_5 = 0b001,
    /// 3 Hz
    Hz3 = 0b010,
    /// 7.5 Hz
    Hz7_5 = 0b011,
    /// 15 Hz
    Hz15 = 0b100,
    /// 30 Hz
    Hz30 = 0b101,
    /// 75 Hz
    Hz75 = 0b110,
    /// 220 Hz
    Hz220 = 0b111,
}

/// Acceleration sensitivity
#[derive(Clone, Copy)]
pub enum Sensitivity {
    /// Range: [-2g, +2g]. Sensitivity ~ 1 g / (1 << 14) LSB
    G1,
    /// Range: [-4g, +4g]. Sensitivity ~ 2 g / (1 << 14) LSB
    G2,
    /// Range: [-8g, +8g]. Sensitivity ~ 4 g / (1 << 14) LSB
    G4,
    /// Range: [-16g, +16g]. Sensitivity ~ 12 g / (1 << 14) LSB
    G12,
}

impl Sensitivity {
    fn value(&self) -> u8 {
        *self as u8
    }
}