1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#[doc = "Register `MASTER` reader"]
pub struct R(crate::R<MASTER_SPEC>);
impl core::ops::Deref for R {
    type Target = crate::R<MASTER_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl From<crate::R<MASTER_SPEC>> for R {
    #[inline(always)]
    fn from(reader: crate::R<MASTER_SPEC>) -> Self {
        R(reader)
    }
}
#[doc = "Register `MASTER` writer"]
pub struct W(crate::W<MASTER_SPEC>);
impl core::ops::Deref for W {
    type Target = crate::W<MASTER_SPEC>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
impl core::ops::DerefMut for W {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}
impl From<crate::W<MASTER_SPEC>> for W {
    #[inline(always)]
    fn from(writer: crate::W<MASTER_SPEC>) -> Self {
        W(writer)
    }
}
#[doc = "Field `MASK` reader - This value determines the maximum size of the trace buffer in SRAM. It specifies the most-significant bit of the POSITION.POINTER field that can be updated by automatic increment. If the trace tries to advance past this power of two, the POSITION.WRAP bit is set to 1, the POSITION.POINTER\\[MASK:0\\]
bits are set to zero, and the POSITION.POINTER\\[AWIDTH-4:MASK+1\\]
bits remain unchanged. This field causes the trace packet information to be stored in a circular buffer of size 2(MASK+4) bytes, that can be positioned in memory at multiples of this size. Valid values of this field are zero to AWIDTH-4. Values greater than the maximum have the same effect as the maximum."]
pub struct MASK_R(crate::FieldReader<u8, u8>);
impl MASK_R {
    pub(crate) fn new(bits: u8) -> Self {
        MASK_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for MASK_R {
    type Target = crate::FieldReader<u8, u8>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `MASK` writer - This value determines the maximum size of the trace buffer in SRAM. It specifies the most-significant bit of the POSITION.POINTER field that can be updated by automatic increment. If the trace tries to advance past this power of two, the POSITION.WRAP bit is set to 1, the POSITION.POINTER\\[MASK:0\\]
bits are set to zero, and the POSITION.POINTER\\[AWIDTH-4:MASK+1\\]
bits remain unchanged. This field causes the trace packet information to be stored in a circular buffer of size 2(MASK+4) bytes, that can be positioned in memory at multiples of this size. Valid values of this field are zero to AWIDTH-4. Values greater than the maximum have the same effect as the maximum."]
pub struct MASK_W<'a> {
    w: &'a mut W,
}
impl<'a> MASK_W<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        self.w.bits = (self.w.bits & !0x1f) | (value as u32 & 0x1f);
        self.w
    }
}
#[doc = "Field `TSTARTEN` reader - Trace start input enable. If this bit is 1 and the TSTART signal is HIGH, then the EN bit is set to 1. Tracing continues until a stop condition occurs."]
pub struct TSTARTEN_R(crate::FieldReader<bool, bool>);
impl TSTARTEN_R {
    pub(crate) fn new(bits: bool) -> Self {
        TSTARTEN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for TSTARTEN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TSTARTEN` writer - Trace start input enable. If this bit is 1 and the TSTART signal is HIGH, then the EN bit is set to 1. Tracing continues until a stop condition occurs."]
pub struct TSTARTEN_W<'a> {
    w: &'a mut W,
}
impl<'a> TSTARTEN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 5)) | ((value as u32 & 0x01) << 5);
        self.w
    }
}
#[doc = "Field `TSTOPEN` reader - Trace stop input enable. If this bit is 1 and the TSTOP signal is HIGH, then the EN bit is set to 0. If a trace packet is being written to memory, the write is completed before tracing is stopped."]
pub struct TSTOPEN_R(crate::FieldReader<bool, bool>);
impl TSTOPEN_R {
    pub(crate) fn new(bits: bool) -> Self {
        TSTOPEN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for TSTOPEN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `TSTOPEN` writer - Trace stop input enable. If this bit is 1 and the TSTOP signal is HIGH, then the EN bit is set to 0. If a trace packet is being written to memory, the write is completed before tracing is stopped."]
pub struct TSTOPEN_W<'a> {
    w: &'a mut W,
}
impl<'a> TSTOPEN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 6)) | ((value as u32 & 0x01) << 6);
        self.w
    }
}
#[doc = "Field `SFRWPRIV` reader - Special Function Register Write Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the Special Function Registers are permitted. If this bit is 1, then only Privileged write accesses are permitted and User write accesses are ignored. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
pub struct SFRWPRIV_R(crate::FieldReader<bool, bool>);
impl SFRWPRIV_R {
    pub(crate) fn new(bits: bool) -> Self {
        SFRWPRIV_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for SFRWPRIV_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `SFRWPRIV` writer - Special Function Register Write Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the Special Function Registers are permitted. If this bit is 1, then only Privileged write accesses are permitted and User write accesses are ignored. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
pub struct SFRWPRIV_W<'a> {
    w: &'a mut W,
}
impl<'a> SFRWPRIV_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 7)) | ((value as u32 & 0x01) << 7);
        self.w
    }
}
#[doc = "Field `RAMPRIV` reader - SRAM Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the SRAM are permitted. If this bit is 1, then only Privileged AHB-Lite read and write accesses to the SRAM are permitted and User accesses are RAZ/WI. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
pub struct RAMPRIV_R(crate::FieldReader<bool, bool>);
impl RAMPRIV_R {
    pub(crate) fn new(bits: bool) -> Self {
        RAMPRIV_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for RAMPRIV_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `RAMPRIV` writer - SRAM Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the SRAM are permitted. If this bit is 1, then only Privileged AHB-Lite read and write accesses to the SRAM are permitted and User accesses are RAZ/WI. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
pub struct RAMPRIV_W<'a> {
    w: &'a mut W,
}
impl<'a> RAMPRIV_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 8)) | ((value as u32 & 0x01) << 8);
        self.w
    }
}
#[doc = "Field `HALTREQ` reader - Halt request bit. This bit is connected to the halt request signal of the trace logic, EDBGRQ. When HALTREQ is set to 1, EDBGRQ is asserted if DBGEN is also HIGH. The HALTREQ bit can be automatically set to 1 using the FLOW.WATERMARK field."]
pub struct HALTREQ_R(crate::FieldReader<bool, bool>);
impl HALTREQ_R {
    pub(crate) fn new(bits: bool) -> Self {
        HALTREQ_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for HALTREQ_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `HALTREQ` writer - Halt request bit. This bit is connected to the halt request signal of the trace logic, EDBGRQ. When HALTREQ is set to 1, EDBGRQ is asserted if DBGEN is also HIGH. The HALTREQ bit can be automatically set to 1 using the FLOW.WATERMARK field."]
pub struct HALTREQ_W<'a> {
    w: &'a mut W,
}
impl<'a> HALTREQ_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 9)) | ((value as u32 & 0x01) << 9);
        self.w
    }
}
#[doc = "Field `EN` reader - Main trace enable bit. When this bit is 1 trace data is written into the SRAM memory location addressed by POSITION.POINTER. The POSITION.POINTER value auto increments after the trace data packet is written. The EN bit can be automatically set to 0 using the FLOW.WATERMARK field and the FLOW.AUTOSTOP bit. The EN bit is automatically set to 1 if the TSTARTEN bit is 1 and the TSTART signal is HIGH. The EN bit is automatically set to 0 if TSTOPEN bit is 1 and the TSTOP signal is HIGH."]
pub struct EN_R(crate::FieldReader<bool, bool>);
impl EN_R {
    pub(crate) fn new(bits: bool) -> Self {
        EN_R(crate::FieldReader::new(bits))
    }
}
impl core::ops::Deref for EN_R {
    type Target = crate::FieldReader<bool, bool>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}
#[doc = "Field `EN` writer - Main trace enable bit. When this bit is 1 trace data is written into the SRAM memory location addressed by POSITION.POINTER. The POSITION.POINTER value auto increments after the trace data packet is written. The EN bit can be automatically set to 0 using the FLOW.WATERMARK field and the FLOW.AUTOSTOP bit. The EN bit is automatically set to 1 if the TSTARTEN bit is 1 and the TSTART signal is HIGH. The EN bit is automatically set to 0 if TSTOPEN bit is 1 and the TSTOP signal is HIGH."]
pub struct EN_W<'a> {
    w: &'a mut W,
}
impl<'a> EN_W<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits = (self.w.bits & !(0x01 << 31)) | ((value as u32 & 0x01) << 31);
        self.w
    }
}
impl R {
    #[doc = "Bits 0:4 - This value determines the maximum size of the trace buffer in SRAM. It specifies the most-significant bit of the POSITION.POINTER field that can be updated by automatic increment. If the trace tries to advance past this power of two, the POSITION.WRAP bit is set to 1, the POSITION.POINTER\\[MASK:0\\]
bits are set to zero, and the POSITION.POINTER\\[AWIDTH-4:MASK+1\\]
bits remain unchanged. This field causes the trace packet information to be stored in a circular buffer of size 2(MASK+4) bytes, that can be positioned in memory at multiples of this size. Valid values of this field are zero to AWIDTH-4. Values greater than the maximum have the same effect as the maximum."]
    #[inline(always)]
    pub fn mask(&self) -> MASK_R {
        MASK_R::new((self.bits & 0x1f) as u8)
    }
    #[doc = "Bit 5 - Trace start input enable. If this bit is 1 and the TSTART signal is HIGH, then the EN bit is set to 1. Tracing continues until a stop condition occurs."]
    #[inline(always)]
    pub fn tstarten(&self) -> TSTARTEN_R {
        TSTARTEN_R::new(((self.bits >> 5) & 0x01) != 0)
    }
    #[doc = "Bit 6 - Trace stop input enable. If this bit is 1 and the TSTOP signal is HIGH, then the EN bit is set to 0. If a trace packet is being written to memory, the write is completed before tracing is stopped."]
    #[inline(always)]
    pub fn tstopen(&self) -> TSTOPEN_R {
        TSTOPEN_R::new(((self.bits >> 6) & 0x01) != 0)
    }
    #[doc = "Bit 7 - Special Function Register Write Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the Special Function Registers are permitted. If this bit is 1, then only Privileged write accesses are permitted and User write accesses are ignored. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
    #[inline(always)]
    pub fn sfrwpriv(&self) -> SFRWPRIV_R {
        SFRWPRIV_R::new(((self.bits >> 7) & 0x01) != 0)
    }
    #[doc = "Bit 8 - SRAM Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the SRAM are permitted. If this bit is 1, then only Privileged AHB-Lite read and write accesses to the SRAM are permitted and User accesses are RAZ/WI. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
    #[inline(always)]
    pub fn rampriv(&self) -> RAMPRIV_R {
        RAMPRIV_R::new(((self.bits >> 8) & 0x01) != 0)
    }
    #[doc = "Bit 9 - Halt request bit. This bit is connected to the halt request signal of the trace logic, EDBGRQ. When HALTREQ is set to 1, EDBGRQ is asserted if DBGEN is also HIGH. The HALTREQ bit can be automatically set to 1 using the FLOW.WATERMARK field."]
    #[inline(always)]
    pub fn haltreq(&self) -> HALTREQ_R {
        HALTREQ_R::new(((self.bits >> 9) & 0x01) != 0)
    }
    #[doc = "Bit 31 - Main trace enable bit. When this bit is 1 trace data is written into the SRAM memory location addressed by POSITION.POINTER. The POSITION.POINTER value auto increments after the trace data packet is written. The EN bit can be automatically set to 0 using the FLOW.WATERMARK field and the FLOW.AUTOSTOP bit. The EN bit is automatically set to 1 if the TSTARTEN bit is 1 and the TSTART signal is HIGH. The EN bit is automatically set to 0 if TSTOPEN bit is 1 and the TSTOP signal is HIGH."]
    #[inline(always)]
    pub fn en(&self) -> EN_R {
        EN_R::new(((self.bits >> 31) & 0x01) != 0)
    }
}
impl W {
    #[doc = "Bits 0:4 - This value determines the maximum size of the trace buffer in SRAM. It specifies the most-significant bit of the POSITION.POINTER field that can be updated by automatic increment. If the trace tries to advance past this power of two, the POSITION.WRAP bit is set to 1, the POSITION.POINTER\\[MASK:0\\]
bits are set to zero, and the POSITION.POINTER\\[AWIDTH-4:MASK+1\\]
bits remain unchanged. This field causes the trace packet information to be stored in a circular buffer of size 2(MASK+4) bytes, that can be positioned in memory at multiples of this size. Valid values of this field are zero to AWIDTH-4. Values greater than the maximum have the same effect as the maximum."]
    #[inline(always)]
    pub fn mask(&mut self) -> MASK_W {
        MASK_W { w: self }
    }
    #[doc = "Bit 5 - Trace start input enable. If this bit is 1 and the TSTART signal is HIGH, then the EN bit is set to 1. Tracing continues until a stop condition occurs."]
    #[inline(always)]
    pub fn tstarten(&mut self) -> TSTARTEN_W {
        TSTARTEN_W { w: self }
    }
    #[doc = "Bit 6 - Trace stop input enable. If this bit is 1 and the TSTOP signal is HIGH, then the EN bit is set to 0. If a trace packet is being written to memory, the write is completed before tracing is stopped."]
    #[inline(always)]
    pub fn tstopen(&mut self) -> TSTOPEN_W {
        TSTOPEN_W { w: self }
    }
    #[doc = "Bit 7 - Special Function Register Write Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the Special Function Registers are permitted. If this bit is 1, then only Privileged write accesses are permitted and User write accesses are ignored. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
    #[inline(always)]
    pub fn sfrwpriv(&mut self) -> SFRWPRIV_W {
        SFRWPRIV_W { w: self }
    }
    #[doc = "Bit 8 - SRAM Privilege bit. If this bit is 0, then User or Privileged AHB-Lite read and write accesses to the SRAM are permitted. If this bit is 1, then only Privileged AHB-Lite read and write accesses to the SRAM are permitted and User accesses are RAZ/WI. The HPROT\\[1\\]
signal determines if an access is User or Privileged."]
    #[inline(always)]
    pub fn rampriv(&mut self) -> RAMPRIV_W {
        RAMPRIV_W { w: self }
    }
    #[doc = "Bit 9 - Halt request bit. This bit is connected to the halt request signal of the trace logic, EDBGRQ. When HALTREQ is set to 1, EDBGRQ is asserted if DBGEN is also HIGH. The HALTREQ bit can be automatically set to 1 using the FLOW.WATERMARK field."]
    #[inline(always)]
    pub fn haltreq(&mut self) -> HALTREQ_W {
        HALTREQ_W { w: self }
    }
    #[doc = "Bit 31 - Main trace enable bit. When this bit is 1 trace data is written into the SRAM memory location addressed by POSITION.POINTER. The POSITION.POINTER value auto increments after the trace data packet is written. The EN bit can be automatically set to 0 using the FLOW.WATERMARK field and the FLOW.AUTOSTOP bit. The EN bit is automatically set to 1 if the TSTARTEN bit is 1 and the TSTART signal is HIGH. The EN bit is automatically set to 0 if TSTOPEN bit is 1 and the TSTOP signal is HIGH."]
    #[inline(always)]
    pub fn en(&mut self) -> EN_W {
        EN_W { w: self }
    }
    #[doc = "Writes raw bits to the register."]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.0.bits(bits);
        self
    }
}
#[doc = "MASTER Register\n\nThis register you can [`read`](crate::generic::Reg::read), [`write_with_zero`](crate::generic::Reg::write_with_zero), [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`modify`](crate::generic::Reg::modify). See [API](https://docs.rs/svd2rust/#read--modify--write-api).\n\nFor information about available fields see [master](index.html) module"]
pub struct MASTER_SPEC;
impl crate::RegisterSpec for MASTER_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [master::R](R) reader structure"]
impl crate::Readable for MASTER_SPEC {
    type Reader = R;
}
#[doc = "`write(|w| ..)` method takes [master::W](W) writer structure"]
impl crate::Writable for MASTER_SPEC {
    type Writer = W;
}
#[doc = "`reset()` method sets MASTER to value 0x80"]
impl crate::Resettable for MASTER_SPEC {
    #[inline(always)]
    fn reset_value() -> Self::Ux {
        0x80
    }
}