1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::STAT {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct RXRDYR {
    bits: bool,
}
impl RXRDYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct TXRDYR {
    bits: bool,
}
impl TXRDYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RXOVR {
    bits: bool,
}
impl RXOVR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct TXURR {
    bits: bool,
}
impl TXURR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct SSAR {
    bits: bool,
}
impl SSAR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct SSDR {
    bits: bool,
}
impl SSDR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct STALLEDR {
    bits: bool,
}
impl STALLEDR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct ENDTRANSFERR {
    bits: bool,
}
impl ENDTRANSFERR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct IDLER {
    bits: bool,
}
impl IDLER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Proxy"]
pub struct _RXRDYW<'a> {
    w: &'a mut W,
}
impl<'a> _RXRDYW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _TXRDYW<'a> {
    w: &'a mut W,
}
impl<'a> _TXRDYW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RXOVW<'a> {
    w: &'a mut W,
}
impl<'a> _RXOVW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 2;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _TXURW<'a> {
    w: &'a mut W,
}
impl<'a> _TXURW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 3;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _SSAW<'a> {
    w: &'a mut W,
}
impl<'a> _SSAW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 4;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _SSDW<'a> {
    w: &'a mut W,
}
impl<'a> _SSDW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 5;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _STALLEDW<'a> {
    w: &'a mut W,
}
impl<'a> _STALLEDW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 6;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _ENDTRANSFERW<'a> {
    w: &'a mut W,
}
impl<'a> _ENDTRANSFERW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 7;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _IDLEW<'a> {
    w: &'a mut W,
}
impl<'a> _IDLEW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 0 - Receiver Ready flag. When 1, indicates that data is available to be read from the receiver buffer. Cleared after a read of the RXDAT register."]
    #[inline]
    pub fn rxrdy(&self) -> RXRDYR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        RXRDYR { bits }
    }
    #[doc = "Bit 1 - Transmitter Ready flag. When 1, this bit indicates that data may be written to the transmit buffer. Previous data may still be in the process of being transmitted. Cleared when data is written to TXDAT or TXDATCTL until the data is moved to the transmit shift register."]
    #[inline]
    pub fn txrdy(&self) -> TXRDYR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        TXRDYR { bits }
    }
    #[doc = "Bit 2 - Receiver Overrun interrupt flag. This flag is set when the beginning of a received character is detected while the receiver buffer is still in use. If this occurs, the receiver buffer contents are preserved, and the incoming data is lost. Data received by the SPI should be considered undefined if RxOv is set."]
    #[inline]
    pub fn rxov(&self) -> RXOVR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 2;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        RXOVR { bits }
    }
    #[doc = "Bit 3 - Transmitter Underrun interrupt flag. This flag applies only to slave mode (Master = 0). In this case, the transmitter must begin sending new data on the next input clock if the transmitter is idle. If that data is not available in the transmitter holding register at that point, there is no data to transmit and the TxUr flag is set. Data transmitted by the SPI should be considered undefined if TxUr is set."]
    #[inline]
    pub fn txur(&self) -> TXURR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 3;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        TXURR { bits }
    }
    #[doc = "Bit 4 - Slave Select Assert. This flag is set whenever any slave select transitions from deasserted to asserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become busy, and allows waking up the device from reduced power modes when a slave mode access begins. This flag is cleared by software."]
    #[inline]
    pub fn ssa(&self) -> SSAR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 4;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SSAR { bits }
    }
    #[doc = "Bit 5 - Slave Select Deassert. This flag is set whenever any asserted slave selects transition to deasserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become idle. This flag is cleared by software."]
    #[inline]
    pub fn ssd(&self) -> SSDR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 5;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        SSDR { bits }
    }
    #[doc = "Bit 6 - Stalled status flag. This indicates whether the SPI is currently in a stall condition."]
    #[inline]
    pub fn stalled(&self) -> STALLEDR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 6;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        STALLEDR { bits }
    }
    #[doc = "Bit 7 - End Transfer control bit. Software can set this bit to force an end to the current transfer when the transmitter finishes any activity already in progress, as if the EOT flag had been set prior to the last transmission. This capability is included to support cases where it is not known when transmit data is written that it will be the end of a transfer. The bit is cleared when the transmitter becomes Idle as the transfer comes to an end. Forcing an end of transfer in this manner causes any specified FrameDelay and TransferDelay to be inserted."]
    #[inline]
    pub fn endtransfer(&self) -> ENDTRANSFERR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 7;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        ENDTRANSFERR { bits }
    }
    #[doc = "Bit 8 - Idle status flag. This bit is 1 whenever the SPI master function is fully idle. This means that the transmit holding register is empty and the transmitter is not in the process of sending data."]
    #[inline]
    pub fn idle(&self) -> IDLER {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        IDLER { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 258 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 0 - Receiver Ready flag. When 1, indicates that data is available to be read from the receiver buffer. Cleared after a read of the RXDAT register."]
    #[inline]
    pub fn rxrdy(&mut self) -> _RXRDYW {
        _RXRDYW { w: self }
    }
    #[doc = "Bit 1 - Transmitter Ready flag. When 1, this bit indicates that data may be written to the transmit buffer. Previous data may still be in the process of being transmitted. Cleared when data is written to TXDAT or TXDATCTL until the data is moved to the transmit shift register."]
    #[inline]
    pub fn txrdy(&mut self) -> _TXRDYW {
        _TXRDYW { w: self }
    }
    #[doc = "Bit 2 - Receiver Overrun interrupt flag. This flag is set when the beginning of a received character is detected while the receiver buffer is still in use. If this occurs, the receiver buffer contents are preserved, and the incoming data is lost. Data received by the SPI should be considered undefined if RxOv is set."]
    #[inline]
    pub fn rxov(&mut self) -> _RXOVW {
        _RXOVW { w: self }
    }
    #[doc = "Bit 3 - Transmitter Underrun interrupt flag. This flag applies only to slave mode (Master = 0). In this case, the transmitter must begin sending new data on the next input clock if the transmitter is idle. If that data is not available in the transmitter holding register at that point, there is no data to transmit and the TxUr flag is set. Data transmitted by the SPI should be considered undefined if TxUr is set."]
    #[inline]
    pub fn txur(&mut self) -> _TXURW {
        _TXURW { w: self }
    }
    #[doc = "Bit 4 - Slave Select Assert. This flag is set whenever any slave select transitions from deasserted to asserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become busy, and allows waking up the device from reduced power modes when a slave mode access begins. This flag is cleared by software."]
    #[inline]
    pub fn ssa(&mut self) -> _SSAW {
        _SSAW { w: self }
    }
    #[doc = "Bit 5 - Slave Select Deassert. This flag is set whenever any asserted slave selects transition to deasserted, in both master and slave modes. This allows determining when the SPI transmit/receive functions become idle. This flag is cleared by software."]
    #[inline]
    pub fn ssd(&mut self) -> _SSDW {
        _SSDW { w: self }
    }
    #[doc = "Bit 6 - Stalled status flag. This indicates whether the SPI is currently in a stall condition."]
    #[inline]
    pub fn stalled(&mut self) -> _STALLEDW {
        _STALLEDW { w: self }
    }
    #[doc = "Bit 7 - End Transfer control bit. Software can set this bit to force an end to the current transfer when the transmitter finishes any activity already in progress, as if the EOT flag had been set prior to the last transmission. This capability is included to support cases where it is not known when transmit data is written that it will be the end of a transfer. The bit is cleared when the transmitter becomes Idle as the transfer comes to an end. Forcing an end of transfer in this manner causes any specified FrameDelay and TransferDelay to be inserted."]
    #[inline]
    pub fn endtransfer(&mut self) -> _ENDTRANSFERW {
        _ENDTRANSFERW { w: self }
    }
    #[doc = "Bit 8 - Idle status flag. This bit is 1 whenever the SPI master function is fully idle. This means that the transmit holding register is empty and the transmitter is not in the process of sending data."]
    #[inline]
    pub fn idle(&mut self) -> _IDLEW {
        _IDLEW { w: self }
    }
}