1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::CONFIG {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = "Possible values of the field `UNIFY`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum UNIFYR {
    #[doc = "The SCT operates as two 16-bit counters named L and H."]
    THE_SCT_OPERATES_AS_,
    #[doc = "The SCT operates as a unified 32-bit counter."]
    UNIFIED,
}
impl UNIFYR {
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        match *self {
            UNIFYR::THE_SCT_OPERATES_AS_ => false,
            UNIFYR::UNIFIED => true,
        }
    }
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _from(value: bool) -> UNIFYR {
        match value {
            false => UNIFYR::THE_SCT_OPERATES_AS_,
            true => UNIFYR::UNIFIED,
        }
    }
    #[doc = "Checks if the value of the field is `THE_SCT_OPERATES_AS_`"]
    #[inline]
    pub fn is_the_sct_operates_as_(&self) -> bool {
        *self == UNIFYR::THE_SCT_OPERATES_AS_
    }
    #[doc = "Checks if the value of the field is `UNIFIED`"]
    #[inline]
    pub fn is_unified(&self) -> bool {
        *self == UNIFYR::UNIFIED
    }
}
#[doc = "Possible values of the field `CLKMODE`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CLKMODER {
    #[doc = "The bus clock clocks the SCT and prescalers."]
    THE_BUS_CLOCK_CLOCKS,
    #[doc = "The SCT clock is the bus clock, but the prescalers are  enabled to count only when sampling of the input selected by  the CKSEL field finds the selected edge. The minimum pulse  width on the clock input is 1 bus clock period. This mode is the high-performance  sampled-clock mode."]
    THE_SCT_CLOCK_IS_THE,
    #[doc = "The input selected by  CKSEL clocks the SCT and prescalers. The input is synchronized to the bus clock and possibly inverted.  The minimum pulse width on the clock input is 1 bus clock  period. This mode is the low-power sampled-clock mode."]
    THE_INPUT_SELECTED_B,
    #[doc = "Reserved."]
    RESERVED_,
}
impl CLKMODER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        match *self {
            CLKMODER::THE_BUS_CLOCK_CLOCKS => 0,
            CLKMODER::THE_SCT_CLOCK_IS_THE => 1,
            CLKMODER::THE_INPUT_SELECTED_B => 2,
            CLKMODER::RESERVED_ => 3,
        }
    }
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _from(value: u8) -> CLKMODER {
        match value {
            0 => CLKMODER::THE_BUS_CLOCK_CLOCKS,
            1 => CLKMODER::THE_SCT_CLOCK_IS_THE,
            2 => CLKMODER::THE_INPUT_SELECTED_B,
            3 => CLKMODER::RESERVED_,
            _ => unreachable!(),
        }
    }
    #[doc = "Checks if the value of the field is `THE_BUS_CLOCK_CLOCKS`"]
    #[inline]
    pub fn is_the_bus_clock_clocks(&self) -> bool {
        *self == CLKMODER::THE_BUS_CLOCK_CLOCKS
    }
    #[doc = "Checks if the value of the field is `THE_SCT_CLOCK_IS_THE`"]
    #[inline]
    pub fn is_the_sct_clock_is_the(&self) -> bool {
        *self == CLKMODER::THE_SCT_CLOCK_IS_THE
    }
    #[doc = "Checks if the value of the field is `THE_INPUT_SELECTED_B`"]
    #[inline]
    pub fn is_the_input_selected_b(&self) -> bool {
        *self == CLKMODER::THE_INPUT_SELECTED_B
    }
    #[doc = "Checks if the value of the field is `RESERVED_`"]
    #[inline]
    pub fn is_reserved_(&self) -> bool {
        *self == CLKMODER::RESERVED_
    }
}
#[doc = "Possible values of the field `CLKSEL`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CLKSELR {
    #[doc = "Rising edges on input 0."]
    RISING_EDGES_ON_INPUT_0,
    #[doc = "Falling edges on input 0."]
    FALLING_EDGES_ON_INPUT_0,
    #[doc = "Rising edges on input 1."]
    RISING_EDGES_ON_INPUT_1,
    #[doc = "Falling edges on input 1."]
    FALLING_EDGES_ON_INPUT_1,
    #[doc = "Rising edges on input 2."]
    RISING_EDGES_ON_INPUT_2,
    #[doc = "Falling edges on input 2."]
    FALLING_EDGES_ON_INPUT_2,
    #[doc = "Rising edges on input 3."]
    RISING_EDGES_ON_INPUT_3,
    #[doc = "Falling edges on input 3."]
    FALLING_EDGES_ON_INPUT_3,
    #[doc = r" Reserved"]
    _Reserved(u8),
}
impl CLKSELR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        match *self {
            CLKSELR::RISING_EDGES_ON_INPUT_0 => 0,
            CLKSELR::FALLING_EDGES_ON_INPUT_0 => 1,
            CLKSELR::RISING_EDGES_ON_INPUT_1 => 2,
            CLKSELR::FALLING_EDGES_ON_INPUT_1 => 3,
            CLKSELR::RISING_EDGES_ON_INPUT_2 => 4,
            CLKSELR::FALLING_EDGES_ON_INPUT_2 => 5,
            CLKSELR::RISING_EDGES_ON_INPUT_3 => 6,
            CLKSELR::FALLING_EDGES_ON_INPUT_3 => 7,
            CLKSELR::_Reserved(bits) => bits,
        }
    }
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _from(value: u8) -> CLKSELR {
        match value {
            0 => CLKSELR::RISING_EDGES_ON_INPUT_0,
            1 => CLKSELR::FALLING_EDGES_ON_INPUT_0,
            2 => CLKSELR::RISING_EDGES_ON_INPUT_1,
            3 => CLKSELR::FALLING_EDGES_ON_INPUT_1,
            4 => CLKSELR::RISING_EDGES_ON_INPUT_2,
            5 => CLKSELR::FALLING_EDGES_ON_INPUT_2,
            6 => CLKSELR::RISING_EDGES_ON_INPUT_3,
            7 => CLKSELR::FALLING_EDGES_ON_INPUT_3,
            i => CLKSELR::_Reserved(i),
        }
    }
    #[doc = "Checks if the value of the field is `RISING_EDGES_ON_INPUT_0`"]
    #[inline]
    pub fn is_rising_edges_on_input_0(&self) -> bool {
        *self == CLKSELR::RISING_EDGES_ON_INPUT_0
    }
    #[doc = "Checks if the value of the field is `FALLING_EDGES_ON_INPUT_0`"]
    #[inline]
    pub fn is_falling_edges_on_input_0(&self) -> bool {
        *self == CLKSELR::FALLING_EDGES_ON_INPUT_0
    }
    #[doc = "Checks if the value of the field is `RISING_EDGES_ON_INPUT_1`"]
    #[inline]
    pub fn is_rising_edges_on_input_1(&self) -> bool {
        *self == CLKSELR::RISING_EDGES_ON_INPUT_1
    }
    #[doc = "Checks if the value of the field is `FALLING_EDGES_ON_INPUT_1`"]
    #[inline]
    pub fn is_falling_edges_on_input_1(&self) -> bool {
        *self == CLKSELR::FALLING_EDGES_ON_INPUT_1
    }
    #[doc = "Checks if the value of the field is `RISING_EDGES_ON_INPUT_2`"]
    #[inline]
    pub fn is_rising_edges_on_input_2(&self) -> bool {
        *self == CLKSELR::RISING_EDGES_ON_INPUT_2
    }
    #[doc = "Checks if the value of the field is `FALLING_EDGES_ON_INPUT_2`"]
    #[inline]
    pub fn is_falling_edges_on_input_2(&self) -> bool {
        *self == CLKSELR::FALLING_EDGES_ON_INPUT_2
    }
    #[doc = "Checks if the value of the field is `RISING_EDGES_ON_INPUT_3`"]
    #[inline]
    pub fn is_rising_edges_on_input_3(&self) -> bool {
        *self == CLKSELR::RISING_EDGES_ON_INPUT_3
    }
    #[doc = "Checks if the value of the field is `FALLING_EDGES_ON_INPUT_3`"]
    #[inline]
    pub fn is_falling_edges_on_input_3(&self) -> bool {
        *self == CLKSELR::FALLING_EDGES_ON_INPUT_3
    }
}
#[doc = r" Value of the field"]
pub struct NORELAOD_LR {
    bits: bool,
}
impl NORELAOD_LR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct NORELOAD_HR {
    bits: bool,
}
impl NORELOAD_HR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct INSYNCR {
    bits: u8,
}
impl INSYNCR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct AUTOLIMIT_LR {
    bits: bool,
}
impl AUTOLIMIT_LR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct AUTOLIMIT_HR {
    bits: bool,
}
impl AUTOLIMIT_HR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = "Values that can be written to the field `UNIFY`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum UNIFYW {
    #[doc = "The SCT operates as two 16-bit counters named L and H."]
    THE_SCT_OPERATES_AS_,
    #[doc = "The SCT operates as a unified 32-bit counter."]
    UNIFIED,
}
impl UNIFYW {
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _bits(&self) -> bool {
        match *self {
            UNIFYW::THE_SCT_OPERATES_AS_ => false,
            UNIFYW::UNIFIED => true,
        }
    }
}
#[doc = r" Proxy"]
pub struct _UNIFYW<'a> {
    w: &'a mut W,
}
impl<'a> _UNIFYW<'a> {
    #[doc = r" Writes `variant` to the field"]
    #[inline]
    pub fn variant(self, variant: UNIFYW) -> &'a mut W {
        {
            self.bit(variant._bits())
        }
    }
    #[doc = "The SCT operates as two 16-bit counters named L and H."]
    #[inline]
    pub fn the_sct_operates_as_(self) -> &'a mut W {
        self.variant(UNIFYW::THE_SCT_OPERATES_AS_)
    }
    #[doc = "The SCT operates as a unified 32-bit counter."]
    #[inline]
    pub fn unified(self) -> &'a mut W {
        self.variant(UNIFYW::UNIFIED)
    }
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = "Values that can be written to the field `CLKMODE`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CLKMODEW {
    #[doc = "The bus clock clocks the SCT and prescalers."]
    THE_BUS_CLOCK_CLOCKS,
    #[doc = "The SCT clock is the bus clock, but the prescalers are  enabled to count only when sampling of the input selected by  the CKSEL field finds the selected edge. The minimum pulse  width on the clock input is 1 bus clock period. This mode is the high-performance  sampled-clock mode."]
    THE_SCT_CLOCK_IS_THE,
    #[doc = "The input selected by  CKSEL clocks the SCT and prescalers. The input is synchronized to the bus clock and possibly inverted.  The minimum pulse width on the clock input is 1 bus clock  period. This mode is the low-power sampled-clock mode."]
    THE_INPUT_SELECTED_B,
    #[doc = "Reserved."]
    RESERVED_,
}
impl CLKMODEW {
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _bits(&self) -> u8 {
        match *self {
            CLKMODEW::THE_BUS_CLOCK_CLOCKS => 0,
            CLKMODEW::THE_SCT_CLOCK_IS_THE => 1,
            CLKMODEW::THE_INPUT_SELECTED_B => 2,
            CLKMODEW::RESERVED_ => 3,
        }
    }
}
#[doc = r" Proxy"]
pub struct _CLKMODEW<'a> {
    w: &'a mut W,
}
impl<'a> _CLKMODEW<'a> {
    #[doc = r" Writes `variant` to the field"]
    #[inline]
    pub fn variant(self, variant: CLKMODEW) -> &'a mut W {
        {
            self.bits(variant._bits())
        }
    }
    #[doc = "The bus clock clocks the SCT and prescalers."]
    #[inline]
    pub fn the_bus_clock_clocks(self) -> &'a mut W {
        self.variant(CLKMODEW::THE_BUS_CLOCK_CLOCKS)
    }
    #[doc = "The SCT clock is the bus clock, but the prescalers are enabled to count only when sampling of the input selected by the CKSEL field finds the selected edge. The minimum pulse width on the clock input is 1 bus clock period. This mode is the high-performance sampled-clock mode."]
    #[inline]
    pub fn the_sct_clock_is_the(self) -> &'a mut W {
        self.variant(CLKMODEW::THE_SCT_CLOCK_IS_THE)
    }
    #[doc = "The input selected by CKSEL clocks the SCT and prescalers. The input is synchronized to the bus clock and possibly inverted. The minimum pulse width on the clock input is 1 bus clock period. This mode is the low-power sampled-clock mode."]
    #[inline]
    pub fn the_input_selected_b(self) -> &'a mut W {
        self.variant(CLKMODEW::THE_INPUT_SELECTED_B)
    }
    #[doc = "Reserved."]
    #[inline]
    pub fn reserved_(self) -> &'a mut W {
        self.variant(CLKMODEW::RESERVED_)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 1;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = "Values that can be written to the field `CLKSEL`"]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CLKSELW {
    #[doc = "Rising edges on input 0."]
    RISING_EDGES_ON_INPUT_0,
    #[doc = "Falling edges on input 0."]
    FALLING_EDGES_ON_INPUT_0,
    #[doc = "Rising edges on input 1."]
    RISING_EDGES_ON_INPUT_1,
    #[doc = "Falling edges on input 1."]
    FALLING_EDGES_ON_INPUT_1,
    #[doc = "Rising edges on input 2."]
    RISING_EDGES_ON_INPUT_2,
    #[doc = "Falling edges on input 2."]
    FALLING_EDGES_ON_INPUT_2,
    #[doc = "Rising edges on input 3."]
    RISING_EDGES_ON_INPUT_3,
    #[doc = "Falling edges on input 3."]
    FALLING_EDGES_ON_INPUT_3,
}
impl CLKSELW {
    #[allow(missing_docs)]
    #[doc(hidden)]
    #[inline]
    pub fn _bits(&self) -> u8 {
        match *self {
            CLKSELW::RISING_EDGES_ON_INPUT_0 => 0,
            CLKSELW::FALLING_EDGES_ON_INPUT_0 => 1,
            CLKSELW::RISING_EDGES_ON_INPUT_1 => 2,
            CLKSELW::FALLING_EDGES_ON_INPUT_1 => 3,
            CLKSELW::RISING_EDGES_ON_INPUT_2 => 4,
            CLKSELW::FALLING_EDGES_ON_INPUT_2 => 5,
            CLKSELW::RISING_EDGES_ON_INPUT_3 => 6,
            CLKSELW::FALLING_EDGES_ON_INPUT_3 => 7,
        }
    }
}
#[doc = r" Proxy"]
pub struct _CLKSELW<'a> {
    w: &'a mut W,
}
impl<'a> _CLKSELW<'a> {
    #[doc = r" Writes `variant` to the field"]
    #[inline]
    pub fn variant(self, variant: CLKSELW) -> &'a mut W {
        unsafe { self.bits(variant._bits()) }
    }
    #[doc = "Rising edges on input 0."]
    #[inline]
    pub fn rising_edges_on_input_0(self) -> &'a mut W {
        self.variant(CLKSELW::RISING_EDGES_ON_INPUT_0)
    }
    #[doc = "Falling edges on input 0."]
    #[inline]
    pub fn falling_edges_on_input_0(self) -> &'a mut W {
        self.variant(CLKSELW::FALLING_EDGES_ON_INPUT_0)
    }
    #[doc = "Rising edges on input 1."]
    #[inline]
    pub fn rising_edges_on_input_1(self) -> &'a mut W {
        self.variant(CLKSELW::RISING_EDGES_ON_INPUT_1)
    }
    #[doc = "Falling edges on input 1."]
    #[inline]
    pub fn falling_edges_on_input_1(self) -> &'a mut W {
        self.variant(CLKSELW::FALLING_EDGES_ON_INPUT_1)
    }
    #[doc = "Rising edges on input 2."]
    #[inline]
    pub fn rising_edges_on_input_2(self) -> &'a mut W {
        self.variant(CLKSELW::RISING_EDGES_ON_INPUT_2)
    }
    #[doc = "Falling edges on input 2."]
    #[inline]
    pub fn falling_edges_on_input_2(self) -> &'a mut W {
        self.variant(CLKSELW::FALLING_EDGES_ON_INPUT_2)
    }
    #[doc = "Rising edges on input 3."]
    #[inline]
    pub fn rising_edges_on_input_3(self) -> &'a mut W {
        self.variant(CLKSELW::RISING_EDGES_ON_INPUT_3)
    }
    #[doc = "Falling edges on input 3."]
    #[inline]
    pub fn falling_edges_on_input_3(self) -> &'a mut W {
        self.variant(CLKSELW::FALLING_EDGES_ON_INPUT_3)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 3;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _NORELAOD_LW<'a> {
    w: &'a mut W,
}
impl<'a> _NORELAOD_LW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 7;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _NORELOAD_HW<'a> {
    w: &'a mut W,
}
impl<'a> _NORELOAD_HW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _INSYNCW<'a> {
    w: &'a mut W,
}
impl<'a> _INSYNCW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 255;
        const OFFSET: u8 = 9;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _AUTOLIMIT_LW<'a> {
    w: &'a mut W,
}
impl<'a> _AUTOLIMIT_LW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 17;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _AUTOLIMIT_HW<'a> {
    w: &'a mut W,
}
impl<'a> _AUTOLIMIT_HW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 18;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bit 0 - SCT operation"]
    #[inline]
    pub fn unify(&self) -> UNIFYR {
        UNIFYR::_from({
            const MASK: bool = true;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        })
    }
    #[doc = "Bits 1:2 - SCT clock mode"]
    #[inline]
    pub fn clkmode(&self) -> CLKMODER {
        CLKMODER::_from({
            const MASK: u8 = 3;
            const OFFSET: u8 = 1;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        })
    }
    #[doc = "Bits 3:6 - SCT clock select"]
    #[inline]
    pub fn clksel(&self) -> CLKSELR {
        CLKSELR::_from({
            const MASK: u8 = 15;
            const OFFSET: u8 = 3;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        })
    }
    #[doc = "Bit 7 - A 1 in this bit prevents the lower match registers from being reloaded from their respective reload registers. Software can write to set or clear this bit at any time. This bit applies to both the higher and lower registers when the UNIFY bit is set."]
    #[inline]
    pub fn norelaod_l(&self) -> NORELAOD_LR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 7;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        NORELAOD_LR { bits }
    }
    #[doc = "Bit 8 - A 1 in this bit prevents the higher match registers from being reloaded from their respective reload registers. Software can write to set or clear this bit at any time. This bit is not used when the UNIFY bit is set."]
    #[inline]
    pub fn noreload_h(&self) -> NORELOAD_HR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        NORELOAD_HR { bits }
    }
    #[doc = "Bits 9:16 - Synchronization for input N (bit 9 = input 0, bit 10 = input 1,..., bit 16 = input 7). A 1 in one of these bits subjects the corresponding input to synchronization to the SCT clock, before it is used to create an event. If an input is synchronous to the SCT clock, keep its bit 0 for faster response. When the CKMODE field is 1x, the bit in this field, corresponding to the input selected by the CKSEL field, is not used."]
    #[inline]
    pub fn insync(&self) -> INSYNCR {
        let bits = {
            const MASK: u8 = 255;
            const OFFSET: u8 = 9;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        INSYNCR { bits }
    }
    #[doc = "Bit 17 - A one in this bit causes a match on match register 0 to be treated as a de-facto LIMIT condition without the need to define an associated event. As with any LIMIT event, this automatic limit causes the counter to be cleared to zero in uni-directional mode or to change the direction of count in bi-directional mode. Software can write to set or clear this bit at any time. This bit applies to both the higher and lower registers when the UNIFY bit is set."]
    #[inline]
    pub fn autolimit_l(&self) -> AUTOLIMIT_LR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 17;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        AUTOLIMIT_LR { bits }
    }
    #[doc = "Bit 18 - A one in this bit will cause a match on match register 0 to be treated as a de-facto LIMIT condition without the need to define an associated event. As with any LIMIT event, this automatic limit causes the counter to be cleared to zero in uni-directional mode or to change the direction of count in bi-directional mode. Software can write to set or clear this bit at any time. This bit is not used when the UNIFY bit is set."]
    #[inline]
    pub fn autolimit_h(&self) -> AUTOLIMIT_HR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 18;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        AUTOLIMIT_HR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 32256 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bit 0 - SCT operation"]
    #[inline]
    pub fn unify(&mut self) -> _UNIFYW {
        _UNIFYW { w: self }
    }
    #[doc = "Bits 1:2 - SCT clock mode"]
    #[inline]
    pub fn clkmode(&mut self) -> _CLKMODEW {
        _CLKMODEW { w: self }
    }
    #[doc = "Bits 3:6 - SCT clock select"]
    #[inline]
    pub fn clksel(&mut self) -> _CLKSELW {
        _CLKSELW { w: self }
    }
    #[doc = "Bit 7 - A 1 in this bit prevents the lower match registers from being reloaded from their respective reload registers. Software can write to set or clear this bit at any time. This bit applies to both the higher and lower registers when the UNIFY bit is set."]
    #[inline]
    pub fn norelaod_l(&mut self) -> _NORELAOD_LW {
        _NORELAOD_LW { w: self }
    }
    #[doc = "Bit 8 - A 1 in this bit prevents the higher match registers from being reloaded from their respective reload registers. Software can write to set or clear this bit at any time. This bit is not used when the UNIFY bit is set."]
    #[inline]
    pub fn noreload_h(&mut self) -> _NORELOAD_HW {
        _NORELOAD_HW { w: self }
    }
    #[doc = "Bits 9:16 - Synchronization for input N (bit 9 = input 0, bit 10 = input 1,..., bit 16 = input 7). A 1 in one of these bits subjects the corresponding input to synchronization to the SCT clock, before it is used to create an event. If an input is synchronous to the SCT clock, keep its bit 0 for faster response. When the CKMODE field is 1x, the bit in this field, corresponding to the input selected by the CKSEL field, is not used."]
    #[inline]
    pub fn insync(&mut self) -> _INSYNCW {
        _INSYNCW { w: self }
    }
    #[doc = "Bit 17 - A one in this bit causes a match on match register 0 to be treated as a de-facto LIMIT condition without the need to define an associated event. As with any LIMIT event, this automatic limit causes the counter to be cleared to zero in uni-directional mode or to change the direction of count in bi-directional mode. Software can write to set or clear this bit at any time. This bit applies to both the higher and lower registers when the UNIFY bit is set."]
    #[inline]
    pub fn autolimit_l(&mut self) -> _AUTOLIMIT_LW {
        _AUTOLIMIT_LW { w: self }
    }
    #[doc = "Bit 18 - A one in this bit will cause a match on match register 0 to be treated as a de-facto LIMIT condition without the need to define an associated event. As with any LIMIT event, this automatic limit causes the counter to be cleared to zero in uni-directional mode or to change the direction of count in bi-directional mode. Software can write to set or clear this bit at any time. This bit is not used when the UNIFY bit is set."]
    #[inline]
    pub fn autolimit_h(&mut self) -> _AUTOLIMIT_HW {
        _AUTOLIMIT_HW { w: self }
    }
}