1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
use core::convert::TryInto;
// use cortex_m_semihosting::hprintln;

use crate::{
    peripherals::flash::Flash,
    typestates::init_state::Enabled,
    traits::flash::{
        Error,
        Result,
        Read,
        WriteErase,
    },
};

pub use generic_array::{
    GenericArray,
    typenum::{U16, U512},
};

// one physical word of Flash consists of 128 bits (or 4 u32, or 16 bytes)
// one page is 32 physical words, or 128 u32s, or 512 bytes)

// reads must be physical word aligned (16 bytes)
// erase and write must be page aligned (512 bytes)

pub const READ_SIZE: usize = 16;
pub const WRITE_SIZE: usize = 512;
pub const PAGE_SIZE: usize = 512;

pub struct FlashGordon {
    flash: Flash<Enabled>,
}

impl FlashGordon {
    pub fn new(flash: Flash<Enabled>) -> Self {

        flash.raw.event.write(|w| w.rst().set_bit());
        // seems immediate
        while flash.raw.int_status.read().done().bit_is_clear() {}

        // first thing to check! illegal command
        debug_assert!(flash.raw.int_status.read().err().bit_is_clear());
        // first thing to check! legal command failed
        debug_assert!(flash.raw.int_status.read().fail().bit_is_clear());

        FlashGordon {
            flash,
        }
    }

    fn clear_status(&self) {
        self.flash.raw.int_clr_status.write(|w| w
            .done().set_bit()
            .ecc_err().set_bit()
            .err().set_bit()
            .fail().set_bit()
        );

    }

    fn status(&self) -> Result {
        let status = self.flash.raw.int_status.read();
        // if status.done().bit_is_clear() {
        //     return Err(Error::Busy);
        // }
        if status.err().bit_is_set() {
            return Err(Error::Illegal);
        }
        if status.ecc_err().bit_is_set() {
            return Err(Error::EccError);
        }
        if status.fail().bit_is_set() {
            return Err(Error::Failure);
        }

        Ok(())
    }

    pub fn just_program_at(
        &mut self,
        address: usize,
    ) -> Result {

        let flash = &self.flash.raw;
        assert!(flash.int_status.read().done().bit_is_set());
        self.clear_status();

        flash.event.write(|w| w.rst().set_bit());
        // seems immediate
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;
        self.clear_status();

        flash.starta.write(|w| unsafe { w.starta().bits((address >> 4) as u32) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Program as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        debug_assert!(flash.int_status.read().err().bit_is_clear());
        debug_assert!(flash.int_status.read().fail().bit_is_clear());
        self.status()?;

        Ok(())

    }

    pub fn clear_page_register(&mut self) {
        let flash = &self.flash.raw;
        assert!(flash.int_status.read().done().bit_is_set());
        self.clear_status();

        for i in 0..32 {
            for j in 0..4 {
                flash.dataw[j].write(|w| unsafe { w.bits(0x0) });
            }
            flash.starta.write(|w| unsafe { w.starta().bits(i as u32) } );
            flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Write as u32) });

            while flash.int_status.read().done().bit_is_clear() {}
            debug_assert!(flash.int_status.read().err().bit_is_clear());
            debug_assert!(flash.int_status.read().fail().bit_is_clear());
            assert!(self.status().is_ok());
        }
    }

    pub fn write_u8(&mut self, address: usize, byte: u8) -> Result {
        self.clear_page_register();
        let flash = &self.flash.raw;
        // which "physical word" is this?
        let page_register_column = (address & (512 - 1)) >> 4;
        let mut word = [0u8; 4];
        word[address % 4] = byte;
        // redundant since done in clear_page_register
        for j in 0..4 {
            flash.dataw[j].write(|w| unsafe { w.bits(0) });
        }
        flash.dataw[(address >> 2) % 4].write(|w| unsafe { w.bits(u32::from_ne_bytes(word)) });
        flash.starta.write(|w| unsafe { w.starta().bits(page_register_column as u32) } );
        self.clear_status();
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Write as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;

        self.clear_status();
        // self.just_program_at(address & !(512 - 1));
        flash.starta.write(|w| unsafe { w.starta().bits((address >> 4) as u32) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Program as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;
        Ok(())
    }

    pub fn write_u32(&mut self, address: usize, word: u32) -> Result {
        self.clear_page_register();
        let flash = &self.flash.raw;

        // which "physical word" is this?
        let page_register_column = (address & (512 - 1)) >> 4;
        // redundant since done in clear_page_register
        for j in 0..4 {
            flash.dataw[j].write(|w| unsafe { w.bits(0) });
        }
        flash.dataw[(address >> 2) % 4].write(|w| unsafe { w.bits(word) });
        flash.starta.write(|w| unsafe { w.starta().bits(page_register_column as u32) } );
        self.clear_status();
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Write as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;

        self.clear_status();
        // self.just_program_at(address & !(512 - 1));
        flash.starta.write(|w| unsafe { w.starta().bits((address >> 4) as u32) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Program as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;

        Ok(())
    }

    pub fn write_u128(&mut self, address: usize, data: u128) -> Result {
        // self.clear_page_register();

        let flash = &self.flash.raw;

        let buf: [u8; 16] = data.to_ne_bytes();

        for (i, chunk) in buf.chunks(4).enumerate() {
            flash.dataw[i].write(|w| unsafe { w.bits(u32::from_ne_bytes(chunk.try_into().unwrap())) } );
        }
        flash.starta.write(|w| unsafe { w.starta().bits((address >> 4) as u32) } );
        self.clear_status();
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Write as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;

        self.clear_status();
        // self.just_program_at(address & !(512 - 1));
        flash.starta.write(|w| unsafe { w.starta().bits((address >> 4) as u32) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Program as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        self.status()?;

        Ok(())
    }

    pub fn read_u128(&mut self, address: usize) -> u128 {
        let mut buf = [0u8; 16];
        self.read(address, &mut buf);
        u128::from_ne_bytes(buf)
    }
}

impl Read<U16> for FlashGordon {
    // this reads 16B or one flash word
    // address is in bytes, whereas starta expects address in flash words
    // so starta = address / 16 = address >> 4
    fn read_native(&self, address: usize, array: &mut GenericArray<u8, U16>) {
        // hprintln!("native read from {} of {:?} (first 16)", address, &array[..16]).ok();
        let flash = &self.flash.raw;

        assert!(flash.int_status.read().done().bit_is_set());
        self.clear_status();
        // if self.status().is_err() {
        //     cortex_m_semihosting::dbg!(flash.int_status.read().bits());
        //     assert!(self.status().is_ok());
        // }
        assert!(self.status().is_ok());

        let addr = address as u32;
        debug_assert!(addr & (READ_SIZE as u32 - 1) == 0);

        flash.starta.write(|w| unsafe { w.starta().bits(addr >> 4) } );
        // want to have normal reads
        flash.dataw[0].write(|w| unsafe { w.bits(0) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::ReadSingleWord as u32) });
        while flash.int_status.read().done().bit_is_clear() { continue; }

        assert!(flash.int_status.read().err().bit_is_clear());
        debug_assert!(flash.int_status.read().fail().bit_is_clear());

        // each dataw[i] now contains 4 bytes
        for (i, chunk) in array.chunks_mut(4).enumerate() {
            chunk.copy_from_slice(&flash.dataw[i].read().bits().to_ne_bytes());
        }
    }
}

impl WriteErase<U512, U512> for FlashGordon {

    fn status(&self) -> Result {
        self.status()
    }

    // TODO: use critical section?
    fn erase_page(&mut self, page: usize) -> Result {
        // starta is still in flash words, of which a page has 32
        let starta = page * 32;
        // hprintln!("native erase page {}", page).ok();

        let flash = &self.flash.raw;
        assert!(flash.int_status.read().done().bit_is_set());
        self.clear_status();
        assert!(flash.int_status.read().done().bit_is_clear());

        flash.starta.write(|w| unsafe { w.starta().bits(starta as u32) } );
        flash.stopa.write(|w| unsafe { w.stopa().bits(starta as u32) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::EraseRange as u32) });
        while flash.int_status.read().done().bit_is_clear() {}

        debug_assert!(flash.int_status.read().err().bit_is_clear());
        debug_assert!(flash.int_status.read().fail().bit_is_clear());
        // cortex_m_semihosting::dbg!(self.status());
        self.status()?;

        Ok(())
    }

    fn write_native(
        &mut self,
        address: usize,
        array: &GenericArray<u8, U512>,
        // cs: &CriticalSection,
    ) -> Result {

        // hprintln!("native write to {} of {:?} (first 16)", address, &array[..16]).ok();
        let flash = &self.flash.raw;
        assert!(flash.int_status.read().done().bit_is_set());
        self.clear_status();

        // maybe check the page is erased?

        // write one physical word (16 bytes) at a time
        for (i, chunk) in array.chunks(16).enumerate() {
            let starta = (address >> 4) + i;
            flash.starta.write(|w| unsafe { w.starta().bits(starta as u32) } );

            for (j, word) in chunk.chunks(4).enumerate() {
                flash.dataw[j].write(|w| unsafe { w.bits(
                    u32::from_ne_bytes(word.try_into().unwrap())
                ) } );
            }

            flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Write as u32) });
            // flash.cmd.write(|w| unsafe { w.bits(FlashCommands::WriteProgram as u32) });
            while flash.int_status.read().done().bit_is_clear() {}
            debug_assert!(flash.int_status.read().err().bit_is_clear());
            debug_assert!(flash.int_status.read().fail().bit_is_clear());
            self.status()?;
        }
        self.clear_status();

        let starta = address >> 4;
        flash.starta.write(|w| unsafe { w.starta().bits(starta as u32) } );
        flash.cmd.write(|w| unsafe { w.bits(FlashCommands::Program as u32) });
        while flash.int_status.read().done().bit_is_clear() {}
        debug_assert!(flash.int_status.read().err().bit_is_clear());
        debug_assert!(flash.int_status.read().fail().bit_is_clear());
        self.status()?;

        Ok(())

    }
}

#[allow(dead_code)]
#[repr(C)]
pub enum FlashCommands {
    Init = 0x0,
    PowerDown = 0x1,
    SetReadMode = 0x2,
    ReadSingleWord = 0x3,
    EraseRange = 0x4,
    BlankCheck = 0x5,
    MarginCheck = 0x6,
    Checksum = 0x7,
    Write = 0x8,
    WriteProgram = 0xA,
    Program = 0xC,
    /// report ECC error (correction) count
    ReportEcc= 0xD,
}

#[cfg(feature = "littlefs")]
#[allow(non_camel_case_types)]
pub mod littlefs_params {
    use super::*;
    pub const READ_SIZE: usize = 16;
    pub const WRITE_SIZE: usize = 512;
    pub const BLOCK_SIZE: usize = 512;

    // no wear-leveling for now
    pub const BLOCK_CYCLES: isize = -1;

    pub type CACHE_SIZE = U512;
    pub type LOOKAHEADWORDS_SIZE = U16;
}

#[cfg(feature = "littlefs")]
#[macro_export]
macro_rules! littlefs2_filesystem {
    ($Name:ident: (
        $BASE_OFFSET:expr
    )) => {
        littlefs2_filesystem!(
            $Name: (
                $BASE_OFFSET,
                //     631.5KB
                ((631 * 1024 + 512) - $BASE_OFFSET) / 512
            )
        );
    };
    ($Name:ident: (
        $BASE_OFFSET:expr,
        $BLOCK_COUNT:expr
    )) => {
        //
        // Compile time assertion that $BASE_OFFSET is 512 byte aligned.
        const _ZERO_SIZED_CHECK: usize = ((core::mem::size_of::<[u8; ($BASE_OFFSET % 512)]>() == 0) as usize) - 1;
        // Compile time assertion that flash region does NOT spill over the 631.5KB boundary.
        const _OVERFLOW_SIZE_CHECK: usize = ((
            core::mem::size_of::<[u8; (($BASE_OFFSET + $BLOCK_COUNT * 512) <= (631 * 1024 + 512)) as usize]>() == 1) as usize) - 1;

        pub struct $Name {
            flash_gordon: $crate::drivers::flash::FlashGordon
        }

        impl $Name {
            const BASE_OFFSET: usize = $BASE_OFFSET;

            pub fn new (flash_gordon: $crate::drivers::flash::FlashGordon) -> Self {
                Self { flash_gordon }
            }
        }

        impl littlefs2::driver::Storage for $Name {
            const READ_SIZE: usize = $crate::drivers::flash::littlefs_params::READ_SIZE;
            const WRITE_SIZE: usize = $crate::drivers::flash::littlefs_params::WRITE_SIZE;
            const BLOCK_SIZE: usize = $crate::drivers::flash::littlefs_params::BLOCK_SIZE;

            const BLOCK_COUNT: usize = $BLOCK_COUNT;
            const BLOCK_CYCLES: isize = $crate::drivers::flash::littlefs_params::BLOCK_CYCLES;

            type CACHE_SIZE = $crate::drivers::flash::littlefs_params::CACHE_SIZE;
            type LOOKAHEADWORDS_SIZE = $crate::drivers::flash::littlefs_params::LOOKAHEADWORDS_SIZE;


            fn read(&self, off: usize, buf: &mut [u8]) -> LfsResult<usize> {
                <$crate::drivers::flash::FlashGordon as $crate::traits::flash::Read<$crate::drivers::flash::U16>>
                    ::read(&self.flash_gordon, Self::BASE_OFFSET + off, buf);
                Ok(buf.len())
            }

            fn write(&mut self, off: usize, data: &[u8]) -> LfsResult<usize> {
                let ret = <$crate::drivers::flash::FlashGordon as $crate::traits::flash::WriteErase<$crate::drivers::flash::U512, $crate::drivers::flash::U512>>
                    ::write(&mut self.flash_gordon, Self::BASE_OFFSET + off, data);
                ret
                    .map(|_| data.len())
                    .map_err(|_| littlefs2::io::Error::Io)
            }

            fn erase(&mut self, off: usize, len: usize) -> LfsResult<usize> {
                let first_page = (Self::BASE_OFFSET + off) / 512;
                let pages = len / 512;
                for i in 0..pages {
                    <$crate::drivers::flash::FlashGordon as $crate::traits::flash::WriteErase<$crate::drivers::flash::U512, $crate::drivers::flash::U512>>
                        ::erase_page(&mut self.flash_gordon, first_page + i)
                        .map_err(|_| littlefs2::io::Error::Io)?;
                }
                Ok(512 * len)
            }

        }
    //
    }
}

#[cfg(feature = "littlefs")]
#[macro_export]
macro_rules! littlefs2_prince_filesystem {
    ($Name:ident: (
        $BASE_OFFSET:expr
    )) => {
        littlefs2_prince_filesystem!(
            $Name: (
                $BASE_OFFSET,
                //     631.5KB
                ((631 * 1024 + 512) - $BASE_OFFSET) / 512
            )
        );
    };
    ($Name:ident: (
        $BASE_OFFSET:expr,
        $BLOCK_COUNT:expr
    )) => {
        //
        // Compile time assertion that $BASE_OFFSET is 512 byte aligned.
        const _ZERO_SIZED_CHECK_0: usize = ((core::mem::size_of::<[u8; ($BASE_OFFSET % 512)]>() == 0) as usize) - 1;
        // Compile time assertion that flash region does NOT spill over the 631.5KB boundary.
        const _OVERFLOW_SIZE_CHECK_0: usize = ((
            core::mem::size_of::<[u8; (($BASE_OFFSET + $BLOCK_COUNT * 512) <= (631 * 1024 + 512)) as usize]>() == 1) as usize) - 1;


        pub struct $Name {
            flash_gordon: $crate::drivers::flash::FlashGordon,
            prince: $crate::peripherals::prince::Prince<$crate::typestates::init_state::Enabled>,
        }

        impl $Name {
            const BASE_OFFSET: usize = $BASE_OFFSET;

            pub fn new (
                flash_gordon: $crate::drivers::flash::FlashGordon,
                prince: $crate::peripherals::prince::Prince<$crate::typestates::init_state::Enabled>,
            ) -> Self {
                Self { flash_gordon, prince }
            }
        }

        impl littlefs2::driver::Storage for $Name {
            const READ_SIZE: usize = $crate::drivers::flash::littlefs_params::READ_SIZE;
            const WRITE_SIZE: usize = $crate::drivers::flash::littlefs_params::WRITE_SIZE;
            const BLOCK_SIZE: usize = $crate::drivers::flash::littlefs_params::BLOCK_SIZE;

            const BLOCK_COUNT: usize = $BLOCK_COUNT;
            const BLOCK_CYCLES: isize = $crate::drivers::flash::littlefs_params::BLOCK_CYCLES;

            type CACHE_SIZE = $crate::drivers::flash::littlefs_params::CACHE_SIZE;
            type LOOKAHEADWORDS_SIZE = $crate::drivers::flash::littlefs_params::LOOKAHEADWORDS_SIZE;


            fn read(&self, off: usize, buf: &mut [u8]) -> LfsResult<usize> {
                self.prince.enable_region_2_for(||{
                    let flash: *const u8 = (Self::BASE_OFFSET + off) as *const u8;
                    for i in 0 .. buf.len() {
                        buf[i] = unsafe{ *flash.offset(i as isize) };
                    }
                });
                Ok(buf.len())
            }

            fn write(&mut self, off: usize, data: &[u8]) -> LfsResult<usize> {
                let prince = &mut self.prince;
                let flash_gordon = &mut self.flash_gordon;
                let ret = prince.write_encrypted(|prince| {
                    prince.enable_region_2_for(||{
                        <$crate::drivers::flash::FlashGordon as
                            $crate::traits::flash::WriteErase<$crate::drivers::flash::U512, $crate::drivers::flash::U512>>
                            ::write(flash_gordon, Self::BASE_OFFSET + off, data)
                    })
                });
                ret
                    .map(|_| data.len())
                    .map_err(|_| littlefs2::io::Error::Io)
            }

            fn erase(&mut self, off: usize, len: usize) -> LfsResult<usize> {
                let first_page = (Self::BASE_OFFSET + off) / 512;
                let pages = len / 512;
                for i in 0..pages {
                    <$crate::drivers::flash::FlashGordon as
                        $crate::traits::flash::WriteErase<$crate::drivers::flash::U512, $crate::drivers::flash::U512>>
                        ::erase_page(&mut self.flash_gordon, first_page + i)
                        .map_err(|_| littlefs2::io::Error::Io)?;
                }
                Ok(512 * len)
            }

        }
    //
    }
}

// Example implementations using 0x8_0000 boundary to separate code and data.
// This leaves 128KB for data and is covered by the last prince region (region 2).
// ```
// littlefs2_filesystem!(FilesystemGordon: (0x8_0000));
// ```