1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//! <p align="center">
//!      <img src="https://raw.github.com/maciejhirsz/logos/master/logos.png" width="60%" alt="Logos">
//! </p>
//!
//! ## Create ridiculously fast Lexers.
//!
//! **Logos** works by:
//!
//! + Resolving all logical branching of token definitions into a state machine.
//! + Optimizing complex patterns into [Lookup Tables](https://en.wikipedia.org/wiki/Lookup_table).
//! + Avoiding backtracking, unwinding loops, and batching reads to minimize bounds checking.
//!
//! In practice it means that for most grammars the lexing performance is virtually unaffected by the number
//! of tokens defined in the grammar. Or, in other words, **it is really fast**.
//!
//! ## Example
//!
//! ```rust
//! use logos::Logos;
//!
//! #[derive(Logos, Debug, PartialEq)]
//! enum Token {
//!     // Logos requires one token variant to handle errors,
//!     // it can be named anything you wish.
//!     #[error]
//!     Error,
//!
//!     // Tokens can be literal strings, of any length.
//!     #[token = "fast"]
//!     Fast,
//!
//!     #[token = "."]
//!     Period,
//!
//!     // Or regular expressions.
//!     #[regex = "[a-zA-Z]+"]
//!     Text,
//! }
//!
//! fn main() {
//!     let mut lex = Token::lexer("Create ridiculously fast Lexers.");
//!
//!     assert_eq!(lex.next(), Some(Token::Text));
//!     assert_eq!(lex.span(), 0..6);
//!     assert_eq!(lex.slice(), "Create");
//!
//!     assert_eq!(lex.next(), Some(Token::Text));
//!     assert_eq!(lex.span(), 7..19);
//!     assert_eq!(lex.slice(), "ridiculously");
//!
//!     assert_eq!(lex.next(), Some(Token::Fast));
//!     assert_eq!(lex.span(), 20..24);
//!     assert_eq!(lex.slice(), "fast");
//!
//!     assert_eq!(lex.next(), Some(Token::Text));
//!     assert_eq!(lex.span(), 25..31);
//!     assert_eq!(lex.slice(), "Lexers");
//!
//!     assert_eq!(lex.next(), Some(Token::Period));
//!     assert_eq!(lex.span(), 31..32);
//!     assert_eq!(lex.slice(), ".");
//!
//!     assert_eq!(lex.next(), None);
//! }
//! ```
//!
//! ### Callbacks
//!
//! **Logos** can also call arbitrary functions whenever a pattern is matched,
//! which can be used to put data into a variant:
//!
//! ```rust
//! use logos::{Logos, Lexer, Extras};
//!
//! // Note: callbacks can return `Option` or `Result`
//! fn kilo(lex: &mut Lexer<Token>) -> Option<u64> {
//!     let slice = lex.slice();
//!     let n: u64 = slice[..slice.len() - 1].parse().ok()?; // skip 'k'
//!     Some(n * 1_000)
//! }
//!
//! fn mega(lex: &mut Lexer<Token>) -> Option<u64> {
//!     let slice = lex.slice();
//!     let n: u64 = slice[..slice.len() - 1].parse().ok()?; // skip 'm'
//!     Some(n * 1_000_000)
//! }
//!
//! #[derive(Logos, Debug, PartialEq)]
//! enum Token {
//!     #[error]
//!     Error,
//!
//!     // Callbacks can use closure syntax, or refer
//!     // to a function defined elsewhere.
//!     //
//!     // Each pattern can have it's own callback.
//!     #[regex("[0-9]+", |lex| lex.slice().parse())]
//!     #[regex("[0-9]+k", kilo)]
//!     #[regex("[0-9]+m", mega)]
//!     Number(u64),
//! }
//!
//! fn main() {
//!     let mut lex = Token::lexer("5 42k 75m");
//!
//!     assert_eq!(lex.next(), Some(Token::Number(5)));
//!     assert_eq!(lex.slice(), "5");
//!
//!     assert_eq!(lex.next(), Some(Token::Number(42_000)));
//!     assert_eq!(lex.slice(), "42k");
//!
//!     assert_eq!(lex.next(), Some(Token::Number(75_000_000)));
//!     assert_eq!(lex.slice(), "75m");
//!
//!     assert_eq!(lex.next(), None);
//! }
//! ```
//!
//! Logos can handle callbacks with following return types:
//!
//! | Return type     | Produces                                           |
//! |-----------------|----------------------------------------------------|
//! | `()`            | `Token::Unit`                                      |
//! | `bool`          | `Token::Unit` **or** `<Token as Logos>::ERROR`     |
//! | `Result<(), _>` | `Token::Unit` **or** `<Token as Logos>::ERROR`     |
//! | `T`             | `Token::Value(T)`                                  |
//! | `Option<T>`     | `Token::Value(T)` **or** `<Token as Logos>::ERROR` |
//! | `Result<T, _>`  | `Token::Value(T)` **or** `<Token as Logos>::ERROR` |
//!
//! Callbacks can be also used to do perform more specialized lexing in place
//! where regular expressions are too limiting. For specifics look at
//! [`Lexer::remainder`](./struct.Lexer.html#method.remainder) and
//! [`Lexer::bump`](./struct.Lexer.html#method.bump).
//!
//! ## Token disambiguation
//!
//! Rule of thumb is:
//!
//! + Longer beats shorter.
//! + Specific beats generic.
//!
//! If any two definitions could match the same input, like `fast` and `[a-zA-Z]+`
//! in the example above, it's the longer and more specific definition of `Token::Fast`
//! that will be the result.
//!
//! This is done by comparing numeric priority attached to each definition. Every consecutive,
//! non-repeating single byte adds 2 to the priority, while every range or regex class adds 1.
//! Loops or optional blocks are ignored, while alternations count the shortest alternative:
//!
//! + `[a-zA-Z]+` has a priority of 1 (lowest possible), because at minimum it can match a single byte to a class.
//! + `foobar` has a priority of 12.
//! + `(foo|hello)(bar)?` has a priority of 6, `foo` being it's shortest possible match.

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]

#[cfg(not(feature = "std"))]
extern crate core as std;

#[cfg(feature = "export_derive")]
pub use logos_derive::Logos;

mod lexer;
pub mod source;

#[doc(hidden)]
pub mod internal;

pub use crate::lexer::{Extras, Lexer, Span, SpannedIter};
pub use crate::source::Source;

/// Trait implemented for an enum representing all tokens. You should never have
/// to implement it manually, use the `#[derive(Logos)]` attribute on your enum.
pub trait Logos<'source>: Sized {
    /// Associated type `Extras` for the particular lexer. Those can handle things that
    /// aren't necessarily tokens, such as comments or Automatic Semicolon Insertion
    /// in JavaScript.
    type Extras: Extras;

    /// Source type this token can be lexed from. This will default to `str`,
    /// unless one of the defined patterns explicitly uses non-unicode byte values
    /// or byte slices, in which case that implementation will use `[u8]`.
    type Source: Source + ?Sized + 'source;

    /// `SIZE` is simply a number of possible variants of the `Logos` enum. The
    /// `derive` macro will make sure that all variants don't hold values larger
    /// or equal to `SIZE`.
    ///
    /// This can be extremely useful for creating `Logos` Lookup Tables.
    const SIZE: usize;

    /// Helper `const` of the variant marked as `#[error]`.
    const ERROR: Self;

    /// The heart of Logos. Called by the `Lexer`. The implementation for this function
    /// is generated by the `logos-derive` crate.
    fn lex(lexer: &mut Lexer<'source, Self>);

    /// Create a new instance of a `Lexer` that will produce tokens implementing
    /// this `Logos`.
    fn lexer(source: &'source Self::Source) -> Lexer<'source, Self> {
        Lexer::new(source)
    }
}

/// Macro for creating lookup tables where index matches the token variant
/// as `usize`.
///
/// This can be especially useful for creating Jump Tables using the static `fn()`
/// function pointers, enabling an O(1) branching at the cost of introducing some
/// indirection.
///
/// ```rust
/// use logos::{Logos, lookup};
///
/// #[derive(Logos, Clone, Copy, PartialEq, Debug)]
/// enum Token {
///     #[error]
///     Error,
///
///     #[token = "Immanetize"]
///     Immanetize,
///
///     #[token = "the"]
///     The,
///
///     #[token = "Eschaton"]
///     Eschaton,
/// }
///
/// static LUT: [fn(u32) -> u32; Token::SIZE] = lookup! {
///     // Rust is smart enough to convert closure syntax to `fn()`
///     // pointers here, as long as we don't capture any values.
///     Token::Eschaton => |n| n + 40,
///     Token::Immanetize => |n| n + 8999,
///     _ => (|_| 0) as fn(u32) -> u32, // Might have to hint the type
/// };
///
/// fn main() {
///     let mut lexer = Token::lexer("Immanetize the Eschaton");
///
///     let mut token = lexer.next().unwrap();
///     assert_eq!(token, Token::Immanetize);
///     assert_eq!(LUT[token as usize](2), 9001); // 2 + 8999
///
///     token = lexer.next().unwrap();
///     assert_eq!(token, Token::The);
///     assert_eq!(LUT[token as usize](2), 0); // always 0
///
///     token = lexer.next().unwrap();
///     assert_eq!(token, Token::Eschaton);
///     assert_eq!(LUT[token as usize](2), 42); // 2 + 40
/// }
/// ```
#[macro_export]
macro_rules! lookup {
    ( $enum:ident::$variant:ident => $value:expr, $( $e:ident::$var:ident => $val:expr ,)* _ => $def:expr $(,)? ) => ({
        let mut table = [$def; $enum::SIZE];

        table[$enum::$variant as usize] = $value;
        $(
            table[$e::$var as usize] = $val;
        )*

        table
    })
}