1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
use crate::{
    gate::GateKind, implemented::RustImpls, util::ContainerSizeGames, Component, ComponentBuilder,
    Gate, GateLike, Sequal,
};

impl<Rust> Default for ComponentBuilder<Rust> {
    fn default() -> Self {
        Self {
            gates: Vec::default(),
            sequals: Vec::default(),
            outputs: usize::default(),
        }
    }
}

impl<Rust> ComponentBuilder<Rust> {
    /// Add a gate to the component
    ///
    /// `gate` is the gate you want to add.
    ///
    /// `sequals` dictate where the outputs of the gate go, in other words the
    /// wiring, these `sequal`s are in order, so the `gate`'s first `output`
    /// will go to the first `sequal` and so on.
    ///
    /// a sequal can either be another gate or one of the components outputs.
    ///
    /// if you want to send an output to several places it must be done
    /// indirectly, you should take a look at [`Gate::dup`].
    pub fn gate(mut self, gate: Gate<Rust>, sequals: Vec<Sequal>) -> Self {
        self.push_sequals(sequals);
        self.gates.push(gate);
        self
    }

    fn push_sequals(&mut self, sequals: Vec<Sequal>) -> &mut Self {
        self.outputs += sequals
            .iter()
            .filter(|x| matches!(x, Sequal::End { .. }))
            .count();
        self.sequals.push(sequals);
        self
    }

    /// Tell the component where it's inputs should go
    ///
    /// after you've added many gates to your component you still need to tell
    /// the component where to start, once you do that your component is ready
    /// and it will be returned from the function
    pub fn inputs(mut self, inputs: Vec<Sequal>) -> Component<Rust> {
        self.push_sequals(inputs);
        Component::from_raw_parts(self.gates, self.sequals, self.outputs)
    }
}

impl<Rust> Component<Rust> {
    /// Aquire a [`ComponentBuilder`]
    pub fn builder() -> ComponentBuilder<Rust> {
        ComponentBuilder::default()
    }

    /// Create a component out of a single gate
    ///
    /// this is mostly useless since the gate itself can probably do whatever
    /// you need and exists mostly for tests
    pub fn single_gate(gate: Gate<Rust>, num_of_outputs: usize) -> Self {
        let inputs = gate.inputs.len();
        Self::builder()
            .gate(gate, (0..num_of_outputs).map(Sequal::end).collect())
            .inputs((0..inputs).map(|entry| Sequal::gate(0, entry)).collect())
    }

    /// Create a component from it's raw parts
    ///
    /// in `sequals` each `Vec<Sequal>` corresponds to a single gates sequals
    /// (in the same index) and the last corresponds to the components inputs
    /// `outputs` is the amount of outputs your component has
    pub fn from_raw_parts(
        gates: Vec<Gate<Rust>>,
        sequals: Vec<Vec<Sequal>>,
        outputs: usize,
    ) -> Self {
        debug_assert_eq!(
            gates.len(),
            sequals.len() - 1,
            "read the documentation of this function"
        );

        Self {
            gates,
            sequals,
            outputs,
        }
    }
}

impl Sequal {
    /// Another gate
    pub fn gate(index: usize, entry: usize) -> Self {
        Self::Gate { index, entry }
    }

    /// An output of the component
    pub fn end(output: usize) -> Self {
        Self::End { output }
    }
}

impl<Rust> Gate<Rust>
where
    Rust: GateLike,
{
    fn new(kind: GateKind<Rust>) -> Self {
        Self {
            inputs: Vec::zeroed(kind.num_of_inputs()),
            inputs_filled: 0,
            kind,
        }
    }

    /// Create a gate from a custom component
    pub fn component(component: Component<Rust>) -> Self {
        Self::new(GateKind::Custom(component))
    }
    /// Create a gate from logic you wrote in rust
    pub fn rust(gate: Rust) -> Self {
        Self::new(GateKind::Rust(RustImpls::User(gate)))
    }
    /// A duplicator, this is akin to a wire splitting
    pub fn dup(amount: usize) -> Self {
        Self::new(GateKind::Rust(RustImpls::Dup(amount)))
    }
    /// This holds a single bit of memory in between CPU ticks
    pub fn mem() -> Self {
        Self::new(GateKind::Rust(RustImpls::Mem(bool::default())))
    }
    /// A Not gate
    pub fn not() -> Self {
        Self::new(GateKind::Rust(RustImpls::Not))
    }
    /// A Nand gate
    pub fn nand() -> Self {
        Self::new(GateKind::Rust(RustImpls::Nand))
    }
    /// A bitwise And gate
    pub fn and() -> Self {
        Self::new(GateKind::Rust(RustImpls::And))
    }
    /// A bitwise Or gate
    pub fn or() -> Self {
        Self::new(GateKind::Rust(RustImpls::Or))
    }
    /// A Nor gate
    pub fn nor() -> Self {
        Self::new(GateKind::Rust(RustImpls::Nor))
    }
    /// An Xor gate
    pub fn xor() -> Self {
        Self::new(GateKind::Rust(RustImpls::Xor))
    }
}