1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// Copyright 2016 FullContact, Inc
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Module containing public traits.
//!
//! This exists as a separate module solely so that it can be wildcard imported
//! where necessary.

use std::char;
use std::cmp::Ord;
use std::ffi::CStr;
use std::mem;
use std::num::Wrapping;
use std::rc::Rc;
use std::slice;
use std::str;
use std::sync::Arc;

use supercow::Supercow;

use ::Ignore;
use cursor::{Cursor, StaleCursor};
use dbi::Database;
use tx::{ConstTransaction, ReadTransaction, WriteTransaction};

pub use error::{self, LmdbResultExt};

/// Extension trait for `Rc` and `Arc` that allows up-casting a reference to
/// `ReadTransaction` or `WriteTransaction` to `ConstTransaction`.
pub trait TxExt {
    #[allow(missing_docs)]
    type Const;
    /// Returns `self` as a handle to a `ConstTransaction` rather than the
    /// subtype that was passed in.
    ///
    /// This is still a shared handle to the same transaction.
    fn to_const(self) -> Self::Const;
}

impl<'a> TxExt for Rc<ReadTransaction<'a>> {
    type Const = Rc<ConstTransaction<'a>>;
    // This is safe, despite appearances. `ReadTransaction` (and below, also
    // `WriteTransaction`) are newtypes, which are guaranteed to have exactly
    // the same memory representation as the thing they wrap. Further, they
    // have no `impl Drop` of their own, so the resulting drop code is exactly
    // equal for both `Rc<ConstTransaction>` and `Rc<ReadTransaction>`.
    fn to_const(self) -> Self::Const { unsafe { mem::transmute(self) } }
}
impl<'a> TxExt for Rc<WriteTransaction<'a>> {
    type Const = Rc<ConstTransaction<'a>>;
    fn to_const(self) -> Self::Const { unsafe { mem::transmute(self) } }
}
impl<'a> TxExt for Arc<ReadTransaction<'a>> {
    type Const = Arc<ConstTransaction<'a>>;
    fn to_const(self) -> Self::Const { unsafe { mem::transmute(self) } }
}
impl<'a> TxExt for Arc<WriteTransaction<'a>> {
    type Const = Arc<ConstTransaction<'a>>;
    fn to_const(self) -> Self::Const { unsafe { mem::transmute(self) } }
}

/// Types of transaction references which can be used to construct `Cursor`s.
///
/// In most cases this is simply used as an extension trait (see the examples
/// on `Cursor`). However, it can also be used to abstract over things that can
/// be used to create `Cursor`s if so desired.
///
/// Implementations are provided for references to the three general
/// transaction types, as well as `Rc` and `Arc` directly wrapping either
/// concrete transaction type with a `'static` lifetime.
pub trait CreateCursor<'txn> {
    /// Create a cursor using `self` as the reference to the containing
    /// transaction and `db` as the database the cursor will read from and
    /// write into.
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>>;
}

impl<'txn, 'env: 'txn> CreateCursor<'txn> for &'txn ConstTransaction<'env> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        ConstTransaction::cursor(*self, db)
    }
}

impl<'txn, 'env: 'txn> CreateCursor<'txn> for &'txn ReadTransaction<'env> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        ConstTransaction::cursor(*self, db)
    }
}

impl<'txn, 'env: 'txn> CreateCursor<'txn> for &'txn WriteTransaction<'env> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        ConstTransaction::cursor(*self, db)
    }
}

impl<'txn> CreateCursor<'txn> for Rc<ReadTransaction<'static>> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        Cursor::construct(Supercow::shared(self.clone().to_const()),
                          db.into())
    }
}

impl<'txn> CreateCursor<'txn> for Arc<ReadTransaction<'static>> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        Cursor::construct(Supercow::shared(self.clone().to_const()),
                          db.into())
    }
}

impl<'txn> CreateCursor<'txn> for Rc<WriteTransaction<'static>> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        Cursor::construct(Supercow::shared(self.clone().to_const()),
                          db.into())
    }
}

impl<'txn> CreateCursor<'txn> for Arc<WriteTransaction<'static>> {
    #[inline]
    fn cursor<'db, DB>(&self, db: DB)
                       -> error::Result<Cursor<'txn,'db>>
    where DB : Into<Supercow<'db, Database<'db>>> {
        Cursor::construct(Supercow::shared(self.clone().to_const()),
                          db.into())
    }
}

/// Types of transaction references which can be used to renew `StaleCursor`s
/// into functional `Cursor`s.
///
/// In most cases this is simply used as an extension trait (see the examples
/// on `Cursor`). However, it can also be used to abstract over things that can
/// be used to create `Cursor`s if so desired.
///
/// Implementations are provided for normal references to `ReadTransaction` as
/// well as `Rc` and `Arc`. The latter two require the transaction's inner
/// lifetime to be `'static`.
pub trait AssocCursor<'txn> {
    /// Associates a saved read-only with this transaction.
    ///
    /// The cursor will be rebound to this transaction, but will continue using
    /// the same database that it was previously.
    fn assoc_cursor<'db>(&self, cursor: StaleCursor<'db>)
                         -> error::Result<Cursor<'txn,'db>>;
}

impl<'txn,'env: 'txn> AssocCursor<'txn> for &'txn ReadTransaction<'env> {
    fn assoc_cursor<'db>(&self, cursor: StaleCursor<'db>)
                         -> error::Result<Cursor<'txn,'db>> {
        ReadTransaction::assoc_cursor(*self, cursor)
    }
}

impl<'txn> AssocCursor<'txn> for Rc<ReadTransaction<'static>> {
    fn assoc_cursor<'db>(&self, cursor: StaleCursor<'db>)
                         -> error::Result<Cursor<'txn,'db>> {
        Cursor::from_stale(cursor, Supercow::shared(self.clone().to_const()))
    }
}

impl<'txn> AssocCursor<'txn> for Arc<ReadTransaction<'static>> {
    fn assoc_cursor<'db>(&self, cursor: StaleCursor<'db>)
                         -> error::Result<Cursor<'txn,'db>> {
        Cursor::from_stale(cursor, Supercow::shared(self.clone().to_const()))
    }
}

/// Translates a value into a byte slice to be stored in LMDB.
///
/// This is similar to `AsRef<[u8]>`, but is separate since there are
/// things one may wish to store in LMDB but not have implicitly coerce to
/// `&[u8]` in other contexts.
///
/// Blanket impls are provided for `LmdbRaw` and for slices of `LmdbRaw`
/// values. Ideally there'd be one for anything `AsRef<[u8]>`, but in Rust
/// 1.10 that's not possible due to coherence rules barring having
/// blanket implementations for both `LmdbRaw` and `AsRef<[u8]>`, so
/// currently it is provided only for `&str` and `&Vec<u8>`.
///
/// _This is not a general-purpose serialisation mechanism._ There is no
/// way to use this trait to store values in a format other than how they
/// are natively represented in memory. Doing this requires serialisation
/// into a byte array before passing it onto lmdb-zero.
pub trait AsLmdbBytes {
    /// Casts the given reference to a byte slice appropriate for storage
    /// in LMDB.
    fn as_lmdb_bytes(&self) -> &[u8];
}

/// Inverts `AsLmdbBytes`, producing a reference to a structure inside a
/// byte array.
///
/// Blanket implementations are provided for `LmdbRaw` and slices of
/// `LmdbRaw` things.
///
/// _This is not a general-purpose deserialisation mechanism._ There is no
/// way to use this trait to read values in any format other than how they
/// are natively represented in memory. The only control is that outright
/// invalid values can be rejected so as to avoid undefined behaviour from,
/// eg, constructing `&str`s with malformed content. Reading values not in
/// native format requires extracting the byte slice and using a separate
/// deserialisation mechanism.
pub trait FromLmdbBytes {
    /// Given a byte slice, return an instance of `Self` described, or
    /// `Err` with an error message if the given byte slice is not an
    /// appropriate value.
    fn from_lmdb_bytes(&[u8]) -> Result<&Self, String>;
}

/// Like `FromLmdbBytes`, but can be used with `put_reserve()` calls.
///
/// A blanket implementation is provided for anything which is `LmdbRaw`.
pub trait FromReservedLmdbBytes {
    /// Given a mutable byte slice containing arbitrary data, return an
    /// instance of `Self`.
    ///
    /// This is not allowed to fail, since there is no control over the
    /// original content of the slice.
    ///
    /// ## Unsafety
    ///
    /// This function is allowed to blindly assume that the byte slice is
    /// an appropriate size.
    unsafe fn from_reserved_lmdb_bytes(&mut [u8]) -> &mut Self;
}

/// Marker trait indicating a value is to be stored in LMDB by simply
/// copying it in.
///
/// This trait implies that one wants integers and such in native byte order
/// and doesn't care about inter-ABI portability of the values. There are a lot
/// of safety implications as well.
///
/// Implementing this trait provides blanket implementations of
/// `AsLmdbBytes`, `FromLmdbBytes`, and `FromReservedLmdbBytes`.
///
/// See also [`LmdbRawIfUnaligned`](trait.LmdbRawIfUnaligned.html) for types
/// that become `LmdbRaw` when wrapped with
/// [`Unaligned`](../struct.Unaligned.html). In particular, all integer and
/// floating-point types are `LmdbRawIfUnaligned`, except for `u8` and `i8`
/// which are also `LmdbRaw`.
///
/// ## Alignment
///
/// The `FromLmdbBytes` conversion fails if the alignment of the input data
/// does not satisfy the alignment of the type. This means that behaviour will
/// be unpredictable if the required alignment of the struct is greater than 1,
/// as conversions will pass or fail depending on where LMDB decides to place
/// the value.
///
/// If you run into this issue, there are several ways to work around it.
///
/// ### Use `Unaligned`
///
/// Instead of directly reading and writing the bare type, wrap it in
/// `lmdb_zero::Unaligned`. This adds no overhead in and of itself and removes
/// the alignment restriction, but heavily restricts what can be done with a
/// reference without copying it.
///
/// This is almost always the best option if your type fits in a register or
/// two.
///
/// ### Make your structure `#[repr(C, packed)]`
///
/// If this is a problem, you can make your structure `#[repr(packed)]` to give
/// it an alignment of 1 (but see also below about padding).
///
/// Note that it is possible to produce unsafe code using this approach even
/// without the use of `unsafe`. See [this rust
/// bug](https://github.com/rust-lang/rust/issues/27060).
///
/// ### Do it yourself
///
/// If you have unusual requirements, your best bet is to implement
/// `FromLmdbBytes` and friends manually as needed.
///
/// ## Unsafety
///
/// If the tagged type contains pointers of any kind, they will be stored in
/// and retrieved from the database, which has serious ramifications,
/// especially when the `FromReservedLmdbBytes` implementation is used. If the
/// type contains Rust references, this will almost certainly lead to undefined
/// behaviour.
///
/// Behaviour is undefined if there exist bit patterns of the same size of the
/// type which are not valid instances of that type unless the client code can
/// somehow guarantee that such bit patterns do not occur. If this is a
/// problem, implement `AsLmdbBytes` and `FromLmdbBytes` manually and check for
/// validity. Of particular note, `bool` and essentially all `enum` types are
/// not sensible for use with `LmdbRaw` (directly or within composites) because
/// they are only valid for particular bit patterns.
///
/// ## Warnings about inner padding
///
/// Use of this trait on a struct that is not `#[repr(packed)]` makes it
/// possible to observe the normally unobservable padding bytes inserted into
/// the structure to satisfy type alignment.
///
/// When simply using these structures as values in a non-`DUPSORT` database,
/// this simply means some arbitrary extra bytes get written with the values.
/// This is not going to be a problem unless you plan on sharing the databases
/// with untrusted third parties (which could leak sensitive information) or do
/// unusual things with type punning.
///
/// However, in any context where values need to be compared (ie, keys, and
/// values in `DUPSORT` databases), these padding bytes now count towards the
/// comparison by default. Since the padding contains unpredictable values, you
/// can easily end up with multiple "identical" keys that differ in their
/// padding bytes, fail to find values you know are in the database because of
/// differences in padding values, etc.
///
/// One way to deal with both problems is to use `#[repr(packed)]` (in addition
/// to `#[repr(C)]` which keeps the field order defined across Rust versions),
/// which simply eliminates the padding bytes altogether. Note that due to a
/// bug in the Rust compiler, [packed structures can lead to undefined
/// behaviour in "safe Rust"](https://github.com/rust-lang/rust/issues/27060).
/// Until that issue is fixed, you should be careful about using
/// `#[repr(packed)]` for this purpose unless all fields in the struct have the
/// same size or you understand the ABI(s) you care about well enough to know
/// whether misalignment will cause issues.
///
/// You can alternatively opt to live with the padding bytes, but additionally
/// implement `LmdbOrdKey` on the type, and then use
/// `DatabaseOptions::sort_keys_as` or `DatabaseOptions::sort_values_as`
/// appropriately to use the generated comparison function. As a result, the
/// padding bytes will be ignored for comparison purposes, but will nontheless
/// be written into the database and thus remain visible to puns and could leak
/// information.
///
/// ## Example
///
/// ```
/// use lmdb_zero::traits::*;
///
/// #[repr(C)]
/// #[derive(Clone,Copy,Debug)]
/// struct MyStruct {
///   foo: i16,
///   // See warning about alignment/padding above!
///   // On AMD64, for example, we get 6 padding bytes here.
///   bar: u64,
/// }
/// unsafe impl LmdbRaw for MyStruct { }
/// ```
pub unsafe trait LmdbRaw : Copy + Sized {
    /// Returns the name of this type to report in error messages.
    ///
    /// If not implemented, defaults to `"?"`.
    fn reported_type() -> String {
        "?".to_owned()
    }
}

/// Marker trait for types where `Unaligned<T>` is `LmdbRaw`.
///
/// This has all the implications as `LmdbRaw`, except that blanket
/// implementations around the bare type are not available. This forces the
/// client code to wrap the type in `Unaligned` to explicitly handle possible
/// misalignment.
///
/// All integer and floating-point types have this trait.
///
/// Note that `LmdbRawIfUnaligned` is not blanket-implemented for fixed-size
/// arrays, because currently doing so would preclude a blanket implementation
/// of `LmdbRaw` for fixed-size arrays. Since the latter is generally more
/// useful and is more consistent since variable-length slices can only
/// usefully interact with `LmdbRaw`, that approach was chosen.
///
/// All `LmdbRaw` types are `LmdbRawIfUnaligned`.
pub unsafe trait LmdbRawIfUnaligned : Copy + Sized {
    /// Returns the name of this type to report in error messages.
    ///
    /// If not implemented, defaults to `"?"`.
    fn reported_type() -> String {
        "?".to_owned()
    }
}

unsafe impl<T : LmdbRaw> LmdbRawIfUnaligned for T {
    fn reported_type() -> String {
        <T as LmdbRaw>::reported_type()
    }
}

/// Trait describing a value which can be used as an LMDB key by having LMDB
/// call into the value's `Ord` implementation.
///
/// ## Unsafety
///
/// Behaviour is undefined if the `FromLmdbBytes` or `Ord` implementations
/// panic.
pub unsafe trait LmdbOrdKey : FromLmdbBytes + Ord {
    /// Returns whether the default LMDB byte-by-byte comparison is correct for
    /// valid values of this type.
    ///
    /// Generally, one should not specifically use
    /// `DatabaseOptions::sort_values_as` and so forth for types where this is
    /// the case. This function exists to support generic code wishing to avoid
    /// the conversion overhead when the types happen to already be
    /// byte-comparable.
    ///
    /// Note that if this returns true, that does _not_ mean that byte
    /// comparison is exactly equivalent to `Ord`-based comparison. For
    /// example, invalid `str` instances sort before valid ones and are equal
    /// to each other, but byte comparison will intermingle them. Because of
    /// this, `DatabaseOptions::sort_values_as` and similar do not make
    /// decisions based on this value; it is the client code's responsibility
    /// to use this if so desired.
    ///
    /// ## Example
    /// ```
    /// # use lmdb_zero::traits::LmdbOrdKey;
    /// assert!(<u8 as LmdbOrdKey>::ordered_by_bytes());
    /// assert!(!<i8 as LmdbOrdKey>::ordered_by_bytes());
    /// assert!(<str as LmdbOrdKey>::ordered_by_bytes());
    /// assert!(<[u8] as LmdbOrdKey>::ordered_by_bytes());
    /// assert!(!<[i8] as LmdbOrdKey>::ordered_by_bytes());
    /// ```
    fn ordered_by_bytes() -> bool { false }

    /// Returns whether LMDB will correctly handle this value with the
    /// `INTEGERKEY` or `INTEGERDUP` flags.
    ///
    /// There's generally no reason to use `sort_keys_as` and so forth with
    /// values where this is true instead of using the appropriate flags. This
    /// function exists to support generic code which wants to make such
    /// decisions automatically.
    fn ordered_as_integer() -> bool { false }
}

/// Marker trait for types where `Unaligned<T>` is `LmdbOrdKey`.
///
/// All `LmdbOrdKey + LmdbRaw` are `LmdbOrdKeyIfUnaligned`.
///
/// ## Unsafety
///
/// Behaviour is undefined if the `FromLmdbBytes` or `Ord` implementations
/// panic.
pub unsafe trait LmdbOrdKeyIfUnaligned : LmdbRawIfUnaligned + Ord {
    /// Like `LmdbOrdKey::ordered_by_bytes()`
    fn ordered_by_bytes() -> bool { false }
    /// Like `LmdbOrdKey::ordered_as_integer()`
    fn ordered_as_integer() -> bool { false }
}

unsafe impl<T : LmdbRaw + LmdbOrdKey> LmdbOrdKeyIfUnaligned for T {
    fn ordered_by_bytes() -> bool {
        <T as LmdbOrdKey>::ordered_by_bytes()
    }

    fn ordered_as_integer() -> bool {
        <T as LmdbOrdKey>::ordered_as_integer()
    }
}

macro_rules! raw {
    ($typ:ident) => {
        unsafe impl LmdbRawIfUnaligned for $typ {
            fn reported_type() -> String {
                stringify!($typ).to_owned()
            }
        }
        impl AsLmdbBytes for $typ {
            fn as_lmdb_bytes(&self) -> &[u8] {
                unsafe {
                    slice::from_raw_parts(
                        self as *const $typ as *const u8,
                        mem::size_of::<$typ>())
                }
            }
        }
        impl AsLmdbBytes for [$typ] {
            fn as_lmdb_bytes(&self) -> &[u8] {
                unsafe {
                    slice::from_raw_parts(
                        self.as_ptr() as *const u8,
                        self.len() * mem::size_of::<$typ>())
                }
            }
        }
    };

    ($typ:ident, Ord) => {
        raw!($typ);
        unsafe impl LmdbOrdKeyIfUnaligned for $typ { }
    };

    ($typ:ident, Int) => {
        raw!($typ);
        unsafe impl LmdbOrdKeyIfUnaligned for $typ {
            fn ordered_as_integer() -> bool { true }
        }
    };
}

unsafe impl LmdbRaw for u8 {
    fn reported_type() -> String {
        "u8".to_owned()
    }
}
unsafe impl LmdbOrdKey for u8 {
    fn ordered_by_bytes() -> bool { true }
}
unsafe impl LmdbRaw for i8 {
    fn reported_type() -> String {
        "i8".to_owned()
    }
}
unsafe impl LmdbOrdKey for i8 { }
raw!(u16, Ord);
raw!(i16, Ord);
raw!(u32, Int);
raw!(i32, Ord);
raw!(u64, Ord);
raw!(i64, Ord);
raw!(f32);
raw!(f64);

macro_rules! raw_array {
    ($n:expr) => {
        unsafe impl<V : LmdbRaw> LmdbRaw for [V;$n] {
            fn reported_type() -> String {
                format!("[{};{}]", V::reported_type(), $n)
            }
        }
        unsafe impl<V : LmdbOrdKey + LmdbRaw> LmdbOrdKey for [V;$n] {
            fn ordered_by_bytes() -> bool { V::ordered_by_bytes() }
        }
    }
}
raw_array!(0);
raw_array!(1);
raw_array!(2);
raw_array!(3);
raw_array!(4);
raw_array!(5);
raw_array!(6);
raw_array!(7);
raw_array!(8);
raw_array!(9);
raw_array!(10);
raw_array!(11);
raw_array!(12);
raw_array!(13);
raw_array!(14);
raw_array!(15);
raw_array!(16);
raw_array!(17);
raw_array!(18);
raw_array!(19);
raw_array!(20);
raw_array!(21);
raw_array!(22);
raw_array!(23);
raw_array!(24);
raw_array!(25);
raw_array!(26);
raw_array!(27);
raw_array!(28);
raw_array!(29);
raw_array!(30);
raw_array!(31);
raw_array!(32);

unsafe impl<V: LmdbRawIfUnaligned> LmdbRawIfUnaligned for Wrapping<V> {
    fn reported_type() -> String {
        format!("Wrapping<{}>", V::reported_type())
    }
}
unsafe impl<V: LmdbOrdKeyIfUnaligned> LmdbOrdKeyIfUnaligned for Wrapping<V> {
    fn ordered_by_bytes() -> bool { V::ordered_by_bytes() }
}

unsafe impl LmdbRaw for () { }

impl<V : LmdbRaw> AsLmdbBytes for V {
    fn as_lmdb_bytes(&self) -> &[u8] {
        unsafe {
            slice::from_raw_parts(
                self as *const V as *const u8, mem::size_of::<V>())
        }
    }
}

impl<V: LmdbRaw> FromLmdbBytes for V {
    fn from_lmdb_bytes(bytes: &[u8]) -> Result<&Self, String> {
        let size = mem::size_of::<V>();
        let align = mem::align_of::<V>();

        if bytes.len() != size {
            return Err(
                format!("Type {} is size {}, but byte array has size {}",
                        V::reported_type(), size, bytes.len()));
        }

        let misalign = (bytes.as_ptr() as usize) % align;
        if 0 != misalign {
            return Err(
                format!("Type {} requires alignment {}, but byte array \
                         at {:08x} is misaligned by {} bytes \
                         (see https://docs.rs/lmdb-zero/{}/\
                         lmdb_zero/traits/trait.LmdbRaw.html#alignment)",
                        V::reported_type(), align,
                        (bytes.as_ptr() as usize), misalign,
                        env!("CARGO_PKG_VERSION")));
        }

        Ok(unsafe {
            mem::transmute(bytes.as_ptr())
        })
    }
}

impl<V : LmdbRaw> FromReservedLmdbBytes for V {
    unsafe fn from_reserved_lmdb_bytes(bytes: &mut [u8]) -> &mut Self {
        mem::transmute(bytes.as_ptr())
    }
}

impl<V : LmdbRaw> AsLmdbBytes for [V] {
    fn as_lmdb_bytes(&self) -> &[u8] {
        unsafe {
            slice::from_raw_parts(
                self.as_ptr() as *const u8,
                self.len() * mem::size_of::<V>())
        }
    }
}

impl<V : LmdbRaw> FromLmdbBytes for [V] {
    fn from_lmdb_bytes(bytes: &[u8]) -> Result<&Self, String> {
        let size = mem::size_of::<V>();
        let align = mem::align_of::<V>();

        let size_mod = bytes.len() % size;
        if 0 != size_mod {
            return Err(
                format!("Type [{}] must have a size which is a multiple \
                         of {}, but byte array has size {} ({} trailing bytes)",
                        V::reported_type(), size, bytes.len(), size_mod));
        }

        let misalign = (bytes.as_ptr() as usize) % align;
        if 0 != misalign {
            return Err(
                format!("Type [{}] requires alignment {}, but byte array \
                         at {:08x} is misaligned by {} bytes \
                         (see https://docs.rs/lmdb-zero/{}/\
                         lmdb_zero/traits/trait.LmdbRaw.html#alignment)",
                        V::reported_type(), align,
                        (bytes.as_ptr() as usize), misalign,
                        env!("CARGO_PKG_VERSION")));
        }

        unsafe {
            Ok(slice::from_raw_parts(
                bytes.as_ptr() as *const V,
                bytes.len() / size))
        }
    }
}

impl<V : LmdbRaw> FromReservedLmdbBytes for [V] {
    unsafe fn from_reserved_lmdb_bytes(bytes: &mut [u8]) -> &mut Self {
        slice::from_raw_parts_mut(
            bytes.as_ptr() as *mut V,
            bytes.len() / mem::size_of::<V>())
    }
}

unsafe impl<V : LmdbOrdKey + LmdbRaw> LmdbOrdKey for [V] {
    fn ordered_by_bytes() -> bool { V::ordered_by_bytes() }
}

impl AsLmdbBytes for CStr {
    /// Returns the raw content of the `CStr`, including the trailing NUL.
    fn as_lmdb_bytes(&self) -> &[u8] {
        self.to_bytes_with_nul()
    }
}

impl FromLmdbBytes for CStr {
    /// Directly converts the byte slice into a `CStr`, including a
    /// required trailing NUL.
    fn from_lmdb_bytes(bytes: &[u8]) -> Result<&Self, String> {
        CStr::from_bytes_with_nul(bytes).map_err(
            |_| "NUL byte in CString value".to_owned())
    }
}

unsafe impl LmdbOrdKey for CStr {
    fn ordered_by_bytes() -> bool { true }
}

impl AsLmdbBytes for str {
    fn as_lmdb_bytes(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl FromLmdbBytes for str {
    fn from_lmdb_bytes(bytes: &[u8]) -> Result<&str, String> {
        str::from_utf8(bytes).map_err(
            |_| "String is not valid UTF-8".to_owned())
    }
}

unsafe impl LmdbOrdKey for str {
    fn ordered_by_bytes() -> bool { true }
}

impl<V : LmdbRaw> AsLmdbBytes for Vec<V> {
    fn as_lmdb_bytes(&self) -> &[u8] {
        &self[..].as_lmdb_bytes()
    }
}

static IGNORE: Ignore = Ignore;

impl FromLmdbBytes for Ignore {
    fn from_lmdb_bytes(_: &[u8]) -> Result<&Ignore, String> {
        Ok(&IGNORE)
    }
}

impl AsLmdbBytes for char {
    fn as_lmdb_bytes(&self) -> &[u8] {
        unsafe {
            slice::from_raw_parts(
                self as *const char as *const u8,
                mem::size_of::<char>())
        }
    }
}

impl AsLmdbBytes for [char] {
    fn as_lmdb_bytes(&self) -> &[u8] {
        unsafe {
            slice::from_raw_parts(
                self.as_ptr() as *const u8,
                self.len() * mem::size_of::<char>())
        }
    }
}