1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! # LitCrypt
//! The name is an abbreviation of ‘Literal Encryption’ – a Rust compiler plugin to encrypt
//! text literals using the [XOR cipher](https://en.wikipedia.org/wiki/XOR_cipher).
//!
//! LitCrypt let’s you hide your static string literal in the binary from naughty eyes and protect
//! your app from illegal cracking activity.
//!
//! LitCrypt works by encrypting string literals during compile time. An encrypted string remains
//! encrypted both on disk and in memory during runtime. It is decypted only when used.
//!
//! ## Usage
//! In `Cargo.toml`, add:
//!
//! ```toml
//! [dependencies]
//! litcrypt = "0.2"
//! ```
//!
//! # Example
//!
//! ```rust
//! #[macro_use]
//! extern crate litcrypt;
//!
//! use_litcrypt!("MY-SECRET-SPELL");
//!
//! fn main(){
//!     println!("his name is: {}", lc!("Voldemort"));
//! }
//! ```
//!
//! The [`use_litcrypt!`] macro must be called first, for initialization. Its parameter is the
//! secret key that is used to encrypt all [`lc!`]-wrapped string literal(s).
//! This key is also encrypted and will not visible in a static analyzer.
//!
//! Only after that can you use the [`lc!`] macro.
//!
//! You can also override the key using an environment variable `LITCRYPT_ENCRYPT_KEY` e.g:
//! ```bash
//! ❯ export LITCRYPT_ENCRYPT_KEY="myverysuperdupermegaultrasecretkey"
//! ```
//!
//! LitCrypt will statically encrypt every string encapsulated in an `lc!` macro.
//!
//! Check the output binary using the `strings` command, e.g:
//!
//! ```bash
//! ❯ strings target/debug/my_valuable_app | grep Voldemort
//! ```
//!
//! If the output is blank then the resp. strings in your app are safe from a static analyzer tool
//! like a hex editor.
//!
//! For an example see the `./examples` directory:
//!
//! ```bash
//! ❯ cargo run --example simple
//! ```
#[macro_use]
extern crate lazy_static;
extern crate proc_macro;
extern crate proc_macro2;
extern crate quote;

#[cfg(test)]
#[macro_use(expect)]
extern crate expectest;

use proc_macro::{TokenStream, TokenTree};
use proc_macro2::Literal;
use quote::quote;
use std::env;

use std::sync::{Arc, Mutex};

mod xor;

lazy_static! {
    static ref MAGIC_SPELL: Arc<Mutex<Option<String>>> = Arc::new(Mutex::new(None));
}

/// Sets the encryption key used for encrypting subsequence strings wrapped in a [`lc!`] macro.
///
/// This key is also encrypted an  will not visible in a static analyzer.
#[proc_macro]
pub fn use_litcrypt(tokens: TokenStream) -> TokenStream {
    let magic_spell = env::var("LITCRYPT_ENCRYPT_KEY").ok().or_else(|| {
        tokens
            .into_iter()
            .find(|a| matches!(a, TokenTree::Literal(_)))
            .map(|a| match a {
                TokenTree::Literal(lit) => {
                    let s = lit.to_string();
                    String::from(&s[1..s.len() - 1])
                }
                _ => "default-secret-word".to_string(),
            })
    });

    {
        let mut m_spell = MAGIC_SPELL.lock().unwrap();
        *m_spell = magic_spell.clone();
    }
    // env::set_var("LITCRYPT_ENCRYPT_KEY", magic_spell.as_ref().map(|a| a.to_string()).unwrap());
    let encdec_func = quote! {
        pub mod litcrypt_internal {
            // This XOR code taken from https://github.com/zummenix/xor-rs
            /// Returns result of a XOR operation applied to a `source` byte sequence.
            ///
            /// `key` will be an infinitely repeating byte sequence.
            pub fn xor(source: &[u8], key: &[u8]) -> Vec<u8> {
                match key.len() {
                    0 => source.into(),
                    1 => xor_with_byte(source, key[0]),
                    _ => {
                        let key_iter = InfiniteByteIterator::new(key);
                        source.iter().zip(key_iter).map(|(&a, b)| a ^ b).collect()
                    }
                }
            }

            /// Returns result of a XOR operation applied to a `source` byte sequence.
            ///
            /// `byte` will be an infinitely repeating byte sequence.
            pub fn xor_with_byte(source: &[u8], byte: u8) -> Vec<u8> {
                source.iter().map(|&a| a ^ byte).collect()
            }

            struct InfiniteByteIterator<'a> {
                bytes: &'a [u8],
                index: usize,
            }

            impl<'a> InfiniteByteIterator<'a> {
                pub fn new(bytes: &'a [u8]) -> InfiniteByteIterator<'a> {
                    InfiniteByteIterator {
                        bytes: bytes,
                        index: 0,
                    }
                }
            }

            impl<'a> Iterator for InfiniteByteIterator<'a> {
                type Item = u8;
                fn next(&mut self) -> Option<u8> {
                    let byte = self.bytes[self.index];
                    self.index = next_index(self.index, self.bytes.len());
                    Some(byte)
                }
            }

            fn next_index(index: usize, count: usize) -> usize {
                if index + 1 < count {
                    index + 1
                } else {
                    0
                }
            }

            pub fn decrypt_bytes(encrypted: &[u8], encrypt_key: &[u8]) -> String {
                let decrypted = xor(&encrypted[..], &encrypt_key);
                String::from_utf8(decrypted).unwrap()
            }
        }
    };
    let result = if let Some(ekey) = magic_spell {
        let ekey = xor::xor(ekey.as_bytes(), b"l33t");
        let ekey = Literal::byte_string(&ekey);
        quote! {
            static LITCRYPT_ENCRYPT_KEY: &'static [u8] = #ekey;
            #encdec_func
        }
    } else {
        let ekey = xor::xor(b"default-secret-word", b"l33t");
        let ekey = Literal::byte_string(&ekey);
        quote! {
            static LITCRYPT_ENCRYPT_KEY: &'static [u8] = #ekey;
            #encdec_func
        }
    };
    result.into()
}

/// Encrypts the resp. string with the key set before, via calling [`use_litcrypt!`].
#[proc_macro]
pub fn lc(_item: TokenStream) -> TokenStream {
    let mut something = String::from("");
    for tok in _item {
        something = match tok {
            TokenTree::Literal(lit) => lit.to_string(),
            _ => "<unknown>".to_owned(),
        }
    }
    something = String::from(&something[1..something.len() - 1]);
    let ekey = {
        let m_spell = MAGIC_SPELL.lock().unwrap();
        (*m_spell).clone()
    };
    let encrypt_key = match ekey {
        Some(ref a) => a.as_bytes(),
        None => b"default-secret-word",
    };
    let encrypt_key = xor::xor(encrypt_key, b"l33t");
    let encrypted = xor::xor(&something.as_bytes(), &encrypt_key);
    let encrypted = Literal::byte_string(&encrypted);

    let result = quote! {
        crate::litcrypt_internal::decrypt_bytes(#encrypted, crate::LITCRYPT_ENCRYPT_KEY)
    };

    result.into()
}