1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! Implementation of [`embedded-hal`] traits for Linux devices
//!
//! [`embedded-hal`]: https://docs.rs/embedded-hal
//!
//! # Drivers
//!
//! This crate lets you use a bunch of platform agnostic drivers that are based on the
//! `embedded-hal` traits. You can find them on crates.io by [searching for the embedded-hal
//! keyword][0].
//!
//! [0]: https://crates.io/keywords/embedded-hal

#![deny(missing_docs)]

use cast;
pub use i2cdev;
pub use nb;
pub use serial_core;
pub use serial_unix;
pub use spidev;

#[cfg(feature = "gpio_sysfs")]
pub use sysfs_gpio;

#[cfg(feature = "gpio_cdev")]
pub use gpio_cdev;


use core::convert::Infallible;
use std::io::{self, Write};
use std::path::{Path, PathBuf};
use std::time::Duration;
use std::{ops, thread};

use cast::{u32, u64};
use embedded_hal::blocking::i2c::Operation as I2cOperation;
use i2cdev::core::{I2CDevice, I2CMessage, I2CTransfer};
use i2cdev::linux::LinuxI2CMessage;
use spidev::SpidevTransfer;

mod serial;
mod timer;

pub use serial::Serial;
pub use timer::SysTimer;

#[cfg(feature = "gpio_sysfs")]
/// Sysfs Pin wrapper module
mod sysfs_pin;

#[cfg(feature = "gpio_cdev")]
/// Cdev Pin wrapper module
mod cdev_pin;

#[cfg(feature = "gpio_cdev")]
/// Cdev pin re-export
pub use cdev_pin::CdevPin;
#[cfg(feature = "gpio_sysfs")]
/// Sysfs pin re-export
pub use sysfs_pin::SysfsPin;

/// Empty struct that provides delay functionality on top of `thread::sleep`
pub struct Delay;

impl embedded_hal::blocking::delay::DelayUs<u8> for Delay {
    type Error = Infallible;

    fn try_delay_us(&mut self, n: u8) -> Result<(), Self::Error> {
        thread::sleep(Duration::new(0, u32(n) * 1000));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayUs<u16> for Delay {
    type Error = Infallible;

    fn try_delay_us(&mut self, n: u16) -> Result<(), Self::Error> {
        thread::sleep(Duration::new(0, u32(n) * 1000));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayUs<u32> for Delay {
    type Error = Infallible;

    fn try_delay_us(&mut self, n: u32) -> Result<(), Self::Error> {
        let secs = n / 1_000_000;
        let nsecs = (n % 1_000_000) * 1_000;

        thread::sleep(Duration::new(u64(secs), nsecs));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayUs<u64> for Delay {
    type Error = Infallible;

    fn try_delay_us(&mut self, n: u64) -> Result<(), Self::Error> {
        let secs = n / 1_000_000;
        let nsecs = ((n % 1_000_000) * 1_000) as u32;

        thread::sleep(Duration::new(secs, nsecs));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayMs<u8> for Delay {
    type Error = Infallible;

    fn try_delay_ms(&mut self, n: u8) -> Result<(), Self::Error> {
        thread::sleep(Duration::from_millis(u64(n)));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayMs<u16> for Delay {
    type Error = Infallible;

    fn try_delay_ms(&mut self, n: u16) -> Result<(), Self::Error> {
        thread::sleep(Duration::from_millis(u64(n)));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayMs<u32> for Delay {
    type Error = Infallible;

    fn try_delay_ms(&mut self, n: u32) -> Result<(), Self::Error> {
        thread::sleep(Duration::from_millis(u64(n)));
        Ok(())
    }
}

impl embedded_hal::blocking::delay::DelayMs<u64> for Delay {
    type Error = Infallible;

    fn try_delay_ms(&mut self, n: u64) -> Result<(), Self::Error> {
        thread::sleep(Duration::from_millis(n));
        Ok(())
    }
}

/// Newtype around [`i2cdev::linux::LinuxI2CDevice`] that implements the `embedded-hal` traits
///
/// [`i2cdev::linux::LinuxI2CDevice`]: https://docs.rs/i2cdev/0.3.1/i2cdev/linux/struct.LinuxI2CDevice.html
pub struct I2cdev {
    inner: i2cdev::linux::LinuxI2CDevice,
    path: PathBuf,
    address: Option<u8>,
}

impl I2cdev {
    /// See [`i2cdev::linux::LinuxI2CDevice::new`][0] for details.
    ///
    /// [0]: https://docs.rs/i2cdev/0.3.1/i2cdev/linux/struct.LinuxI2CDevice.html#method.new
    pub fn new<P>(path: P) -> Result<Self, i2cdev::linux::LinuxI2CError>
    where
        P: AsRef<Path>,
    {
        let dev = I2cdev {
            path: path.as_ref().to_path_buf(),
            inner: i2cdev::linux::LinuxI2CDevice::new(path, 0)?,
            address: None,
        };
        Ok(dev)
    }

    fn set_address(&mut self, address: u8) -> Result<(), i2cdev::linux::LinuxI2CError> {
        if self.address != Some(address) {
            self.inner = i2cdev::linux::LinuxI2CDevice::new(&self.path, u16::from(address))?;
            self.address = Some(address);
        }
        Ok(())
    }
}

impl embedded_hal::blocking::i2c::Read for I2cdev {
    type Error = i2cdev::linux::LinuxI2CError;

    fn try_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
        self.set_address(address)?;
        self.inner.read(buffer)
    }
}

impl embedded_hal::blocking::i2c::Write for I2cdev {
    type Error = i2cdev::linux::LinuxI2CError;

    fn try_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
        self.set_address(address)?;
        self.inner.write(bytes)
    }
}

impl embedded_hal::blocking::i2c::WriteRead for I2cdev {
    type Error = i2cdev::linux::LinuxI2CError;

    fn try_write_read(
        &mut self,
        address: u8,
        bytes: &[u8],
        buffer: &mut [u8],
    ) -> Result<(), Self::Error> {
        self.set_address(address)?;
        let mut messages = [
            LinuxI2CMessage::write(bytes),
            LinuxI2CMessage::read(buffer),
        ];
        self.inner.transfer(&mut messages).map(drop)
    }
}

impl embedded_hal::blocking::i2c::Transactional for I2cdev {
    type Error = i2cdev::linux::LinuxI2CError;

    fn try_exec(&mut self, address: u8, operations: &mut [I2cOperation]) -> Result<(), Self::Error>
    {
        // Map operations from generic to linux objects
        let mut messages: Vec<_> = operations
            .as_mut()
            .iter_mut()
            .map(|a| match a {
                I2cOperation::Write(w) => LinuxI2CMessage::write(w),
                I2cOperation::Read(r) => LinuxI2CMessage::read(r),
            })
            .collect();

        self.set_address(address)?;
        self.inner.transfer(&mut messages).map(drop)
    }
}

impl ops::Deref for I2cdev {
    type Target = i2cdev::linux::LinuxI2CDevice;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl ops::DerefMut for I2cdev {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inner
    }
}

/// Newtype around [`spidev::Spidev`] that implements the `embedded-hal` traits
///
/// [`spidev::Spidev`]: https://docs.rs/spidev/0.4.0/spidev/struct.Spidev.html
pub struct Spidev(pub spidev::Spidev);

impl Spidev {
    /// See [`spidev::Spidev::open`][0] for details.
    ///
    /// [0]: https://docs.rs/spidev/0.4.0/spidev/struct.Spidev.html#method.open
    pub fn open<P>(path: P) -> io::Result<Self>
    where
        P: AsRef<Path>,
    {
        spidev::Spidev::open(path).map(Spidev)
    }
}

impl embedded_hal::blocking::spi::Transfer<u8> for Spidev {
    type Error = io::Error;

    fn try_transfer<'b>(&mut self, buffer: &'b mut [u8]) -> io::Result<&'b [u8]> {
        let tx = buffer.to_owned();
        self.0
            .transfer(&mut SpidevTransfer::read_write(&tx, buffer))?;
        Ok(buffer)
    }
}

impl embedded_hal::blocking::spi::Write<u8> for Spidev {
    type Error = io::Error;

    fn try_write(&mut self, buffer: &[u8]) -> io::Result<()> {
        self.0.write_all(buffer)
    }
}

pub use embedded_hal::blocking::spi::{Operation as SpiOperation};

/// Transactional implementation batches SPI operations into a single transaction
impl embedded_hal::blocking::spi::Transactional<u8> for Spidev {
    type Error = io::Error;

    fn try_exec<'a>(&mut self, operations: &mut [SpiOperation<'a, u8>]) -> Result<(), Self::Error> {

        // Map types from generic to linux objects
        let mut messages: Vec<_> = operations.iter_mut().map(|a| {
            match a {
                SpiOperation::Write(w) => SpidevTransfer::write(w),
                SpiOperation::Transfer(r) => {
                    // Clone read to write pointer
                    // SPIdev is okay with having w == r but this is tricky to achieve in safe rust
                    let w = unsafe {
                        let p = r.as_ptr();
                        std::slice::from_raw_parts(p, r.len())
                    };

                    SpidevTransfer::read_write(w, r)
                },
            }
        }).collect();

        // Execute transfer
        self.0.transfer_multiple(&mut messages)
    }
}

impl ops::Deref for Spidev {
    type Target = spidev::Spidev;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl ops::DerefMut for Spidev {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}