Struct linfa::dataset::Pr

source ·
pub struct Pr(/* private fields */);
Expand description

Probability types

This helper struct exists to distinguish probabilities from floating points. For example SVM selects regression or classification training, based on the target type, and could not distinguish them without a new-type definition.

Implementations§

source§

impl Pr

source

pub fn new(prob: f32) -> Self

Creates probability from the given float.

Panics

Panics if probability is negative or bigger than one.

source

pub fn new_unchecked(prob: f32) -> Self

Creates probability from the given float. Doesn’t check whether it is negative or bigger than one.

source

pub fn even() -> Pr

Methods from Deref<Target = f32>§

1.43.0 · source

pub const RADIX: u32 = 2u32

1.43.0 · source

pub const MANTISSA_DIGITS: u32 = 24u32

1.43.0 · source

pub const DIGITS: u32 = 6u32

1.43.0 · source

pub const EPSILON: f32 = 1.1920929E-7f32

1.43.0 · source

pub const MIN: f32 = -3.40282347E+38f32

1.43.0 · source

pub const MIN_POSITIVE: f32 = 1.17549435E-38f32

1.43.0 · source

pub const MAX: f32 = 3.40282347E+38f32

1.43.0 · source

pub const MIN_EXP: i32 = -125i32

1.43.0 · source

pub const MAX_EXP: i32 = 128i32

1.43.0 · source

pub const MIN_10_EXP: i32 = -37i32

1.43.0 · source

pub const MAX_10_EXP: i32 = 38i32

1.43.0 · source

pub const NAN: f32 = NaN_f32

1.43.0 · source

pub const INFINITY: f32 = +Inf_f32

1.43.0 · source

pub const NEG_INFINITY: f32 = -Inf_f32

1.62.0 · source

pub fn total_cmp(&self, other: &f32) -> Ordering

Return the ordering between self and other.

Unlike the standard partial comparison between floating point numbers, this comparison always produces an ordering in accordance to the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard. The values are ordered in the following sequence:

  • negative quiet NaN
  • negative signaling NaN
  • negative infinity
  • negative numbers
  • negative subnormal numbers
  • negative zero
  • positive zero
  • positive subnormal numbers
  • positive numbers
  • positive infinity
  • positive signaling NaN
  • positive quiet NaN.

The ordering established by this function does not always agree with the PartialOrd and PartialEq implementations of f32. For example, they consider negative and positive zero equal, while total_cmp doesn’t.

The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.

Example
struct GoodBoy {
    name: String,
    weight: f32,
}

let mut bois = vec![
    GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
    GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
    GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
    GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
    GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
    GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];

bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));

// `f32::NAN` could be positive or negative, which will affect the sort order.
if f32::NAN.is_sign_negative() {
    assert!(bois.into_iter().map(|b| b.weight)
        .zip([f32::NAN, -5.0, 0.1, 10.0, 99.0, f32::INFINITY].iter())
        .all(|(a, b)| a.to_bits() == b.to_bits()))
} else {
    assert!(bois.into_iter().map(|b| b.weight)
        .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter())
        .all(|(a, b)| a.to_bits() == b.to_bits()))
}

Trait Implementations§

source§

impl Clone for Pr

source§

fn clone(&self) -> Pr

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Pr

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for Pr

source§

fn default() -> Pr

Returns the “default value” for a type. Read more
source§

impl Deref for Pr

§

type Target = f32

The resulting type after dereferencing.
source§

fn deref(&self) -> &f32

Dereferences the value.
source§

impl PartialEq for Pr

source§

fn eq(&self, other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd for Pr

source§

fn partial_cmp(&self, other: &Pr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl TryFrom<f32> for Pr

Tries to convert float to probability type.

Returns

Either probability type Pr(f32) or error as Err(f32)

§

type Error = f32

The type returned in the event of a conversion error.
source§

fn try_from(prob: f32) -> Result<Self, Self::Error>

Performs the conversion.
source§

impl Copy for Pr

Auto Trait Implementations§

§

impl RefUnwindSafe for Pr

§

impl Send for Pr

§

impl Sync for Pr

§

impl Unpin for Pr

§

impl UnwindSafe for Pr

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V