1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
//! Linear Scaling methods

use crate::error::{PreprocessingError, Result};
use approx::abs_diff_eq;
use linfa::dataset::{AsTargets, DatasetBase, Float, WithLapack};
use linfa::traits::{Fit, Transformer};
#[cfg(not(feature = "blas"))]
use linfa_linalg::norm::Norm;
use ndarray::{Array1, Array2, ArrayBase, Axis, Data, Ix2, Zip};
#[cfg(feature = "blas")]
use ndarray_linalg::norm::Norm;

#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};

#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Clone, Debug, PartialEq, Eq)]
/// Possible scaling methods for [LinearScaler]
///
/// * Standard (with mean, with std): subtracts the mean to each feature and scales it by the inverse of its standard deviation
/// * MinMax (min, max): scales each feature to fit in the range `min..=max`, default values are
/// `0..=1`
/// * MaxAbs: scales each feature by the inverse of its maximum absolute value, so that it fits the range `-1..=1`
pub enum ScalingMethod<F: Float> {
    Standard(bool, bool),
    MinMax(F, F),
    MaxAbs,
}

impl<F: Float> ScalingMethod<F> {
    pub(crate) fn fit<D: Data<Elem = F>>(
        &self,
        records: &ArrayBase<D, Ix2>,
    ) -> Result<LinearScaler<F>> {
        match self {
            ScalingMethod::Standard(a, b) => Self::standardize(records, *a, *b),
            ScalingMethod::MinMax(a, b) => Self::min_max(records, *a, *b),
            ScalingMethod::MaxAbs => Self::max_abs(records),
        }
    }

    fn standardize<D: Data<Elem = F>>(
        records: &ArrayBase<D, Ix2>,
        with_mean: bool,
        with_std: bool,
    ) -> Result<LinearScaler<F>> {
        if records.dim().0 == 0 {
            return Err(PreprocessingError::NotEnoughSamples);
        }
        // safe unwrap because of above zero records check
        let means = records.mean_axis(Axis(0)).unwrap();
        let std_devs = if with_std {
            records.std_axis(Axis(0), F::zero()).mapv(|s| {
                if abs_diff_eq!(s, F::zero()) {
                    // if feature is constant then don't scale
                    F::one()
                } else {
                    F::one() / s
                }
            })
        } else {
            Array1::ones(records.dim().1)
        };
        Ok(LinearScaler {
            offsets: means,
            scales: std_devs,
            method: ScalingMethod::Standard(with_mean, with_std),
        })
    }

    fn min_max<D: Data<Elem = F>>(
        records: &ArrayBase<D, Ix2>,
        min: F,
        max: F,
    ) -> Result<LinearScaler<F>> {
        if records.dim().0 == 0 {
            return Err(PreprocessingError::NotEnoughSamples);
        } else if min > max {
            return Err(PreprocessingError::FlippedMinMaxRange);
        }

        let mins = records.fold_axis(
            Axis(0),
            F::infinity(),
            |&x, &prev| if x < prev { x } else { prev },
        );
        let mut scales =
            records.fold_axis(
                Axis(0),
                F::neg_infinity(),
                |&x, &prev| if x > prev { x } else { prev },
            );
        Zip::from(&mut scales).and(&mins).for_each(|max, min| {
            if abs_diff_eq!(*max - *min, F::zero()) {
                // if feature is constant then don't scale
                *max = F::one();
            } else {
                *max = F::one() / (*max - *min);
            }
        });
        Ok(LinearScaler {
            offsets: mins,
            scales,
            method: ScalingMethod::MinMax(min, max),
        })
    }

    fn max_abs<D: Data<Elem = F>>(records: &ArrayBase<D, Ix2>) -> Result<LinearScaler<F>> {
        if records.dim().0 == 0 {
            return Err(PreprocessingError::NotEnoughSamples);
        }
        let scales: Array1<F> = records.map_axis(Axis(0), |col| {
            let norm_max = F::cast(col.with_lapack().norm_max());
            if abs_diff_eq!(norm_max, F::zero()) {
                // if feature is constant at zero then don't scale
                F::one()
            } else {
                F::one() / norm_max
            }
        });

        let offsets = Array1::zeros(records.dim().1);
        Ok(LinearScaler {
            offsets,
            scales,
            method: ScalingMethod::MaxAbs,
        })
    }
}

impl<F: Float> std::fmt::Display for ScalingMethod<F> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            ScalingMethod::Standard(with_mean, with_std) => write!(
                f,
                "Standard scaler (with_mean = {}, with_std = {})",
                with_mean, with_std
            ),
            ScalingMethod::MinMax(min, max) => {
                write!(f, "Min-Max scaler (min = {}, max = {})", min, max)
            }
            ScalingMethod::MaxAbs => write!(f, "MaxAbs scaler"),
        }
    }
}

/// Linear Scaler: learns scaling parameters, according to the specified [method](ScalingMethod), from a dataset, producing a [fitted linear scaler](LinearScaler)
/// that can be used to scale different datasets using the same parameters.
///
///
/// ### Example
///
/// ```rust
/// use linfa::traits::{Fit, Transformer};
/// use linfa_preprocessing::linear_scaling::LinearScaler;
///
/// // Load dataset
/// let dataset = linfa_datasets::diabetes();
/// // Learn scaling parameters
/// let scaler = LinearScaler::standard().fit(&dataset).unwrap();
/// // scale dataset according to parameters
/// let dataset = scaler.transform(dataset);
/// ```
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LinearScalerParams<F: Float> {
    method: ScalingMethod<F>,
}

impl<F: Float> LinearScalerParams<F> {
    /// Initializes the scaler with the specified method.
    pub fn new(method: ScalingMethod<F>) -> Self {
        Self { method }
    }

    /// Setter for the scaler method
    pub fn method(mut self, method: ScalingMethod<F>) -> Self {
        self.method = method;
        self
    }
}

impl<F: Float> LinearScaler<F> {
    /// Initializes a Standard scaler
    pub fn standard() -> LinearScalerParams<F> {
        LinearScalerParams {
            method: ScalingMethod::Standard(true, true),
        }
    }

    /// Initializes a Standard scaler that does not subract the mean to the features
    pub fn standard_no_mean() -> LinearScalerParams<F> {
        LinearScalerParams {
            method: ScalingMethod::Standard(false, true),
        }
    }

    /// Initializes a Stadard scaler that does not scale the features by the inverse of the standard deviation
    pub fn standard_no_std() -> LinearScalerParams<F> {
        LinearScalerParams {
            method: ScalingMethod::Standard(true, false),
        }
    }

    /// Initializes a MinMax scaler with range `0..=1`
    pub fn min_max() -> LinearScalerParams<F> {
        LinearScalerParams {
            method: ScalingMethod::MinMax(F::zero(), F::one()),
        }
    }

    /// Initializes a MinMax scaler with the specified minimum and maximum values for the range.
    ///
    /// If `min` is bigger than `max` then fitting will return an error on any input.
    pub fn min_max_range(min: F, max: F) -> LinearScalerParams<F> {
        LinearScalerParams {
            method: ScalingMethod::MinMax(min, max),
        }
    }

    /// Initializes a MaxAbs scaler
    pub fn max_abs() -> LinearScalerParams<F> {
        LinearScalerParams {
            method: ScalingMethod::MaxAbs,
        }
    }
}

impl<F: Float, D: Data<Elem = F>, T: AsTargets> Fit<ArrayBase<D, Ix2>, T, PreprocessingError>
    for LinearScalerParams<F>
{
    type Object = LinearScaler<F>;

    /// Fits the input dataset accordng to the scaler [method](ScalingMethod). Will return an error
    /// if the dataset does not contain any samples or (in the case of MinMax scaling) if the specified range is not valid.
    fn fit(&self, x: &DatasetBase<ArrayBase<D, Ix2>, T>) -> Result<Self::Object> {
        self.method.fit(x.records())
    }
}

#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Debug, Clone, PartialEq, Eq)]
/// The result of fitting a [linear scaler](LinearScalerParams).
/// Scales datasets with the parameters learned during fitting.
pub struct LinearScaler<F: Float> {
    offsets: Array1<F>,
    scales: Array1<F>,
    method: ScalingMethod<F>,
}

impl<F: Float> LinearScaler<F> {
    /// Array of size `n_features` that contains the offset that will be subtracted to each feature
    pub fn offsets(&self) -> &Array1<F> {
        &self.offsets
    }

    /// Array of size `n_features` that contains the scale that will be applied to each feature
    pub fn scales(&self) -> &Array1<F> {
        &self.scales
    }

    /// Returns the method used for fitting. Useful for printing, since [ScalingMethod] implements `Display`
    pub fn method(&self) -> &ScalingMethod<F> {
        &self.method
    }
}

impl<F: Float> Transformer<Array2<F>, Array2<F>> for LinearScaler<F> {
    /// Scales an array of size (nsamples, nfeatures) according to the scaler's `offsets` and `scales`.
    /// Panics if the shape of the input array is not compatible with the shape of the dataset used for fitting.
    fn transform(&self, x: Array2<F>) -> Array2<F> {
        if x.is_empty() {
            return x;
        }
        let mut x = x;
        Zip::from(x.columns_mut())
            .and(self.offsets())
            .and(self.scales())
            .for_each(|mut col, &offset, &scale| {
                if let ScalingMethod::Standard(false, _) = self.method {
                    col.mapv_inplace(|el| (el - offset) * scale + offset);
                } else {
                    col.mapv_inplace(|el| (el - offset) * scale);
                }
            });
        match &self.method {
            ScalingMethod::MinMax(min, max) => x * (*max - *min) + *min,
            _ => x,
        }
    }
}

impl<F: Float, D: Data<Elem = F>, T: AsTargets>
    Transformer<DatasetBase<ArrayBase<D, Ix2>, T>, DatasetBase<Array2<F>, T>> for LinearScaler<F>
{
    /// Substitutes the records of the dataset with their scaled version.
    /// Panics if the shape of the records is not compatible with the shape of the dataset used for fitting.
    fn transform(&self, x: DatasetBase<ArrayBase<D, Ix2>, T>) -> DatasetBase<Array2<F>, T> {
        let feature_names = x.feature_names();
        let (records, targets, weights) = (x.records, x.targets, x.weights);
        let records = self.transform(records.to_owned());
        DatasetBase::new(records, targets)
            .with_weights(weights)
            .with_feature_names(feature_names)
    }
}

#[cfg(test)]
mod tests {
    use crate::linear_scaling::{LinearScaler, LinearScalerParams};
    use approx::assert_abs_diff_eq;
    use linfa::dataset::DatasetBase;
    use linfa::traits::{Fit, Transformer};
    use ndarray::{array, Array2, Axis};

    #[test]
    fn autotraits() {
        fn has_autotraits<T: Send + Sync + Sized + Unpin>() {}
        has_autotraits::<LinearScaler<f64>>();
        has_autotraits::<LinearScalerParams<f64>>();
        has_autotraits::<ScalingMethod<f64>>();
    }

    #[test]
    fn test_max_abs() {
        let dataset = array![[1., -1.], [2., -2.], [3., -3.], [4., -5.]].into();
        let scaler = LinearScaler::max_abs().fit(&dataset).unwrap();
        let scaled = scaler.transform(dataset);
        let col0 = scaled.records().column(0);
        let col1 = scaled.records().column(1);
        assert_abs_diff_eq!(col0, array![1. / 4., 2. / 4., 3. / 4., 1.]);
        assert_abs_diff_eq!(col1, array![-1. / 5., -2. / 5., -3. / 5., -1.]);
    }

    #[test]
    fn test_standard_scaler() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let scaler = LinearScaler::standard().fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![1., 0., 1. / 3.]);
        assert_abs_diff_eq!(
            *scaler.scales(),
            array![1. / 0.81, 1. / 0.81, 1. / 1.24],
            epsilon = 1e-2
        );
        let transformed = scaler.transform(dataset);
        let means = transformed.records().mean_axis(Axis(0)).unwrap();
        let std_devs = transformed.records().std_axis(Axis(0), 0.);
        assert_abs_diff_eq!(means, array![0., 0., 0.]);
        assert_abs_diff_eq!(std_devs, array![1., 1., 1.]);
    }

    #[test]
    fn test_standard_scaler_no_mean() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let scaler = LinearScaler::standard_no_mean().fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![1., 0., 1. / 3.]);
        assert_abs_diff_eq!(
            *scaler.scales(),
            array![1. / 0.81, 1. / 0.81, 1. / 1.24],
            epsilon = 1e-2
        );
        let transformed = scaler.transform(dataset);
        let means = transformed.records().mean_axis(Axis(0)).unwrap();
        let std_devs = transformed.records().std_axis(Axis(0), 0.);
        assert_abs_diff_eq!(means, array![1., 0., (1. / 3.)], epsilon = 1e-2);
        assert_abs_diff_eq!(std_devs, array![1., 1., 1.]);
    }

    #[test]
    fn test_standard_scaler_no_std() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let scaler = LinearScaler::standard_no_std().fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![1., 0., 1. / 3.]);
        assert_abs_diff_eq!(*scaler.scales(), array![1., 1., 1.],);
        let transformed = scaler.transform(dataset);
        let means = transformed.records().mean_axis(Axis(0)).unwrap();
        let std_devs = transformed.records().std_axis(Axis(0), 0.);
        assert_abs_diff_eq!(means, array![0., 0., 0.]);
        assert_abs_diff_eq!(std_devs, array![0.81, 0.81, 1.24], epsilon = 1e-2);
    }

    use super::ScalingMethod;

    #[test]
    fn test_standard_scaler_no_both() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let scaler = LinearScalerParams::new(ScalingMethod::Standard(false, false))
            .fit(&dataset)
            .unwrap();

        let original_means = dataset.records().mean_axis(Axis(0)).unwrap();
        let original_stds = dataset.records().std_axis(Axis(0), 0.);

        assert_abs_diff_eq!(*scaler.offsets(), original_means);
        assert_abs_diff_eq!(*scaler.scales(), array![1., 1., 1.],);

        let transformed = scaler.transform(dataset);

        let means = transformed.records().mean_axis(Axis(0)).unwrap();
        let std_devs = transformed.records().std_axis(Axis(0), 0.);

        assert_abs_diff_eq!(means, original_means);
        assert_abs_diff_eq!(std_devs, original_stds, epsilon = 1e-2);
    }

    #[test]
    fn test_min_max_scaler() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let scaler = LinearScaler::min_max().fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![0., -1., -1.]);
        assert_abs_diff_eq!(*scaler.scales(), array![1. / 2., 1. / 2., 1. / 3.]);
        let transformed = scaler.transform(dataset);
        let mins = transformed
            .records()
            .fold_axis(
                Axis(0),
                f64::INFINITY,
                |&x, &prev| if x < prev { x } else { prev },
            );
        let maxes = transformed
            .records()
            .fold_axis(
                Axis(0),
                f64::NEG_INFINITY,
                |&x, &prev| if x > prev { x } else { prev },
            );
        assert_abs_diff_eq!(maxes, array![1., 1., 1.]);
        assert_abs_diff_eq!(mins, array![0., 0., 0.]);
    }

    #[test]
    fn test_min_max_scaler_range() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let scaler = LinearScaler::min_max_range(5., 10.).fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![0., -1., -1.]);
        assert_abs_diff_eq!(*scaler.scales(), array![1. / 2., 1. / 2., 1. / 3.]);
        let transformed = scaler.transform(dataset);
        let mins = transformed
            .records()
            .fold_axis(
                Axis(0),
                f64::INFINITY,
                |&x, &prev| if x < prev { x } else { prev },
            );
        let maxes = transformed
            .records()
            .fold_axis(
                Axis(0),
                f64::NEG_INFINITY,
                |&x, &prev| if x > prev { x } else { prev },
            );
        assert_abs_diff_eq!(mins, array![5., 5., 5.]);
        assert_abs_diff_eq!(maxes, array![10., 10., 10.]);
    }

    #[test]
    fn test_standard_const_feature() {
        let dataset = array![[1., 2., 2.], [2., 2., 0.], [0., 2., -1.]].into();
        let scaler = LinearScaler::standard().fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![1., 2., 1. / 3.]);
        assert_abs_diff_eq!(
            *scaler.scales(),
            array![1. / 0.81, 1., 1. / 1.24],
            epsilon = 1e-2
        );
        let transformed = scaler.transform(dataset);
        let means = transformed.records().mean_axis(Axis(0)).unwrap();
        let std_devs = transformed.records().std_axis(Axis(0), 0.);
        assert_abs_diff_eq!(means, array![0., 0., 0.]);
        // 0 std dev on constant feature
        assert_abs_diff_eq!(std_devs, array![1., 0., 1.]);
    }

    #[test]
    fn test_max_abs_const_null_feature() {
        let dataset = array![[1., 0.], [2., 0.], [3., 0.], [4., 0.]].into();
        let scaler = LinearScaler::max_abs().fit(&dataset).unwrap();
        let scaled = scaler.transform(dataset);
        let col0 = scaled.records().column(0);
        let col1 = scaled.records().column(1);
        assert_abs_diff_eq!(col0, array![1. / 4., 2. / 4., 3. / 4., 1.]);
        // const 0 feature stays zero
        assert_abs_diff_eq!(col1, array![0., 0., 0., 0.]);
    }

    #[test]
    fn test_min_max_scaler_const_feature() {
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::min_max().fit(&dataset).unwrap();
        assert_abs_diff_eq!(*scaler.offsets(), array![0., -1., 2.]);
        assert_abs_diff_eq!(*scaler.scales(), array![1. / 2., 1. / 2., 1.]);
        let transformed = scaler.transform(dataset);
        let mins = transformed
            .records()
            .fold_axis(
                Axis(0),
                f64::INFINITY,
                |&x, &prev| if x < prev { x } else { prev },
            );
        let maxes = transformed
            .records()
            .fold_axis(
                Axis(0),
                f64::NEG_INFINITY,
                |&x, &prev| if x > prev { x } else { prev },
            );
        // 0 max for constant feature
        assert_abs_diff_eq!(maxes, array![1., 1., 0.]);
        assert_abs_diff_eq!(mins, array![0., 0., 0.]);
    }

    #[test]
    fn test_empty_input() {
        let dataset: DatasetBase<Array2<f64>, _> =
            Array2::from_shape_vec((0, 0), vec![]).unwrap().into();
        let scaler = LinearScaler::standard().fit(&dataset);
        assert_eq!(
            scaler.err().unwrap().to_string(),
            "not enough samples".to_string()
        );
        let scaler = LinearScaler::standard_no_mean().fit(&dataset);
        assert_eq!(
            scaler.err().unwrap().to_string(),
            "not enough samples".to_string()
        );
        let scaler = LinearScaler::standard_no_std().fit(&dataset);
        assert_eq!(
            scaler.err().unwrap().to_string(),
            "not enough samples".to_string()
        );
        let scaler = LinearScaler::min_max().fit(&dataset);
        assert_eq!(
            scaler.err().unwrap().to_string(),
            "not enough samples".to_string()
        );
        let scaler = LinearScaler::max_abs().fit(&dataset);
        assert_eq!(
            scaler.err().unwrap().to_string(),
            "not enough samples".to_string()
        );
    }

    #[test]
    fn test_transform_empty_array() {
        let empty: Array2<f64> = Array2::from_shape_vec((0, 0), vec![]).unwrap();
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::standard().fit(&dataset).unwrap();
        let transformed = scaler.transform(empty.clone());
        assert!(transformed.is_empty());
        let scaler = LinearScaler::standard_no_mean().fit(&dataset).unwrap();
        let transformed = scaler.transform(empty.clone());
        assert!(transformed.is_empty());
        let scaler = LinearScaler::standard_no_std().fit(&dataset).unwrap();
        let transformed = scaler.transform(empty.clone());
        assert!(transformed.is_empty());
        let scaler = LinearScaler::min_max().fit(&dataset).unwrap();
        let transformed = scaler.transform(empty.clone());
        assert!(transformed.is_empty());
        let scaler = LinearScaler::max_abs().fit(&dataset).unwrap();
        let transformed = scaler.transform(empty);
        assert!(transformed.is_empty());
    }

    #[test]
    fn test_retain_feature_names() {
        let dataset = linfa_datasets::diabetes();
        let original_feature_names = dataset.feature_names();
        let transformed = LinearScaler::standard()
            .fit(&dataset)
            .unwrap()
            .transform(dataset);
        assert_eq!(original_feature_names, transformed.feature_names())
    }

    #[test]
    #[should_panic]
    fn test_transform_wrong_size_array_standard() {
        let wrong_size = Array2::from_shape_vec((1, 2), vec![0., 0.]).unwrap();
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::standard().fit(&dataset).unwrap();
        let _transformed = scaler.transform(wrong_size);
    }
    #[test]
    #[should_panic]
    fn test_transform_wrong_size_array_standard_no_mean() {
        let wrong_size = Array2::from_shape_vec((1, 2), vec![0., 0.]).unwrap();
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::standard_no_mean().fit(&dataset).unwrap();
        let _transformed = scaler.transform(wrong_size);
    }
    #[test]
    #[should_panic]
    fn test_transform_wrong_size_array_standard_no_std() {
        let wrong_size = Array2::from_shape_vec((1, 2), vec![0., 0.]).unwrap();
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::standard_no_std().fit(&dataset).unwrap();
        let _transformed = scaler.transform(wrong_size);
    }
    #[test]
    #[should_panic]
    fn test_transform_wrong_size_array_min_max() {
        let wrong_size = Array2::from_shape_vec((1, 2), vec![0., 0.]).unwrap();
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::min_max().fit(&dataset).unwrap();
        let _transformed = scaler.transform(wrong_size);
    }
    #[test]
    #[should_panic]
    fn test_transform_wrong_size_array_max_abs() {
        let wrong_size = Array2::from_shape_vec((1, 2), vec![0., 0.]).unwrap();
        let dataset = array![[1., -1., 2.], [2., 0., 2.], [0., 1., 2.]].into();
        let scaler = LinearScaler::max_abs().fit(&dataset).unwrap();
        let _transformed = scaler.transform(wrong_size);
    }

    #[test]
    #[should_panic]
    fn test_min_max_wrong_range() {
        let dataset = array![[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]].into();
        let _scaler = LinearScaler::min_max_range(10., 5.).fit(&dataset).unwrap();
    }
}