1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use crate::{glm::link::Link, LinearError, TweedieRegressor};
use linfa::{Float, ParamGuard};
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};

/// The set of hyperparameters that can be specified for the execution of the Tweedie Regressor.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
pub struct TweedieRegressorValidParams<F> {
    alpha: F,
    fit_intercept: bool,
    power: F,
    link: Option<Link>,
    max_iter: usize,
    tol: F,
}

impl<F: Float> TweedieRegressorValidParams<F> {
    pub fn alpha(&self) -> F {
        self.alpha
    }

    pub fn fit_intercept(&self) -> bool {
        self.fit_intercept
    }

    pub fn power(&self) -> F {
        self.power
    }

    pub fn link(&self) -> Link {
        match self.link {
            Some(x) => x,
            None if self.power <= F::zero() => Link::Identity,
            None => Link::Log,
        }
    }

    pub fn max_iter(&self) -> usize {
        self.max_iter
    }

    pub fn tol(&self) -> F {
        self.tol
    }
}

/// The set of hyperparameters that can be specified for the execution of the Tweedie Regressor.
#[derive(Debug, Clone, PartialEq)]
pub struct TweedieRegressorParams<F>(TweedieRegressorValidParams<F>);

impl<F: Float> Default for TweedieRegressorParams<F> {
    fn default() -> Self {
        Self::new()
    }
}

impl<F: Float> TweedieRegressor<F> {
    pub fn params() -> TweedieRegressorParams<F> {
        TweedieRegressorParams::new()
    }
}

impl<F: Float> TweedieRegressorParams<F> {
    pub fn new() -> Self {
        Self(TweedieRegressorValidParams {
            alpha: F::one(),
            fit_intercept: true,
            power: F::one(),
            link: None,
            max_iter: 100,
            tol: F::cast(1e-4),
        })
    }

    /// Constant that multiplies with the penalty term and thus determines the
    /// regularization strenght. `alpha` set to 0 is equivalent to unpenalized GLM.
    pub fn alpha(mut self, alpha: F) -> Self {
        self.0.alpha = alpha;
        self
    }

    /// Specifies whether a bias or intercept should be added to the model
    pub fn fit_intercept(mut self, fit_intercept: bool) -> Self {
        self.0.fit_intercept = fit_intercept;
        self
    }

    /// The power determines the underlying target distribution
    pub fn power(mut self, power: F) -> Self {
        self.0.power = power;
        self
    }

    /// The link function of the GLM, for mapping from linear predictor `x @ coeff + intercept` to
    /// the prediction. If no value is set, the link will be selected based on the following,
    /// - [`identity`](Link::Identity) for Normal distribution (`power` = 0)
    /// - [`log`](Link::Log) for Poisson, Gamma and Inverse Gaussian distributions (`power` >= 1)
    pub fn link(mut self, link: Link) -> Self {
        self.0.link = Some(link);
        self
    }

    /// Maximum number of iterations for the LBFGS solver
    pub fn max_iter(mut self, max_iter: usize) -> Self {
        self.0.max_iter = max_iter;
        self
    }

    /// Stopping criterion for the LBFGS solver
    pub fn tol(mut self, tol: F) -> Self {
        self.0.tol = tol;
        self
    }
}

impl<F: Float> ParamGuard for TweedieRegressorParams<F> {
    type Checked = TweedieRegressorValidParams<F>;
    type Error = LinearError<F>;

    fn check_ref(&self) -> Result<&Self::Checked, Self::Error> {
        if self.0.alpha.is_sign_negative() {
            Err(LinearError::InvalidPenalty(self.0.alpha))
        } else if self.0.power > F::zero() && self.0.power < F::one() {
            Err(LinearError::InvalidTweediePower(self.0.power))
        } else {
            Ok(&self.0)
        }
    }

    fn check(self) -> Result<Self::Checked, Self::Error> {
        self.check_ref()?;
        Ok(self.0)
    }
}