1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
//! Keep stats, and dispaly them to the user. Usually used in a broker, or main node, of some sort.

pub mod multi;
pub use multi::MultiStats;

use serde::{Deserialize, Serialize};

use alloc::{string::String, vec::Vec};
use core::{fmt, time, time::Duration};

use hashbrown::HashMap;

#[cfg(feature = "introspection")]
use alloc::string::ToString;
#[cfg(feature = "introspection")]
use core::convert::TryInto;

use crate::bolts::current_time;

const CLIENT_STATS_TIME_WINDOW_SECS: u64 = 5; // 5 seconds

/// User-defined stats types
#[derive(Serialize, Deserialize, Debug, Clone)]
pub enum UserStats {
    Number(u64),
    String(String),
    Ratio(u64, u64),
}

impl fmt::Display for UserStats {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            UserStats::Number(n) => write!(f, "{}", n),
            UserStats::String(s) => write!(f, "{}", s),
            UserStats::Ratio(a, b) => {
                if *b == 0 {
                    write!(f, "{}/{}", a, b)
                } else {
                    write!(f, "{}/{} ({}%)", a, b, a * 100 / b)
                }
            }
        }
    }
}

/// A simple struct to keep track of client stats
#[derive(Debug, Clone, Default)]
pub struct ClientStats {
    // stats (maybe we need a separated struct?)
    /// The corpus size for this client
    pub corpus_size: u64,
    /// The total executions for this client
    pub executions: u64,
    /// The size of the objectives corpus for this client
    pub objective_size: u64,
    /// The last reported executions for this client
    pub last_window_executions: u64,
    /// The last time we got this information
    pub last_window_time: time::Duration,
    /// The last executions per sec
    pub last_execs_per_sec: f32,
    /// User-defined stats
    pub user_stats: HashMap<String, UserStats>,

    /// Client performance statistics
    #[cfg(feature = "introspection")]
    pub introspection_stats: ClientPerfStats,
}

impl ClientStats {
    /// We got a new information about executions for this client, insert them.
    pub fn update_executions(&mut self, executions: u64, cur_time: time::Duration) {
        let diff = cur_time
            .checked_sub(self.last_window_time)
            .map_or(0, |d| d.as_secs());
        if diff > CLIENT_STATS_TIME_WINDOW_SECS {
            let _ = self.execs_per_sec(cur_time);
            self.last_window_time = cur_time;
            self.last_window_executions = self.executions;
        }
        self.executions = executions;
    }

    /// We got a new information about corpus size for this client, insert them.
    pub fn update_corpus_size(&mut self, corpus_size: u64) {
        self.corpus_size = corpus_size;
    }

    /// We got a new information about objective corpus size for this client, insert them.
    pub fn update_objective_size(&mut self, objective_size: u64) {
        self.objective_size = objective_size;
    }

    /// Get the calculated executions per second for this client
    #[allow(clippy::cast_sign_loss, clippy::cast_precision_loss)]
    pub fn execs_per_sec(&mut self, cur_time: time::Duration) -> u64 {
        if self.executions == 0 {
            return 0;
        }

        let elapsed = cur_time
            .checked_sub(self.last_window_time)
            .map_or(0, |d| d.as_secs());
        if elapsed == 0 {
            return self.last_execs_per_sec as u64;
        }

        let cur_avg = ((self.executions - self.last_window_executions) as f32) / (elapsed as f32);
        if self.last_window_executions == 0 {
            self.last_execs_per_sec = cur_avg;
            return self.last_execs_per_sec as u64;
        }

        // If there is a dramatic (5x+) jump in speed, reset the indicator more quickly
        if cur_avg * 5.0 < self.last_execs_per_sec || cur_avg / 5.0 > self.last_execs_per_sec {
            self.last_execs_per_sec = cur_avg;
        }

        self.last_execs_per_sec =
            self.last_execs_per_sec * (1.0 - 1.0 / 16.0) + cur_avg * (1.0 / 16.0);
        self.last_execs_per_sec as u64
    }

    /// Update the user-defined stat with name and value
    pub fn update_user_stats(&mut self, name: String, value: UserStats) {
        self.user_stats.insert(name, value);
    }

    /// Get a user-defined stat using the name
    pub fn get_user_stats(&mut self, name: &str) -> Option<&UserStats> {
        self.user_stats.get(name)
    }

    /// Update the current [`ClientPerfStats`] with the given [`ClientPerfStats`]
    #[cfg(feature = "introspection")]
    pub fn update_introspection_stats(&mut self, introspection_stats: ClientPerfStats) {
        self.introspection_stats = introspection_stats;
    }
}

/// The stats trait keeps track of all the client's stats, and offers methods to dispaly them.
pub trait Stats {
    /// the client stats (mut)
    fn client_stats_mut(&mut self) -> &mut Vec<ClientStats>;

    /// the client stats
    fn client_stats(&self) -> &[ClientStats];

    /// creation time
    fn start_time(&mut self) -> time::Duration;

    /// show the stats to the user
    fn display(&mut self, event_msg: String, sender_id: u32);

    /// Amount of elements in the corpus (combined for all children)
    fn corpus_size(&self) -> u64 {
        self.client_stats()
            .iter()
            .fold(0_u64, |acc, x| acc + x.corpus_size)
    }

    /// Amount of elements in the objectives (combined for all children)
    fn objective_size(&self) -> u64 {
        self.client_stats()
            .iter()
            .fold(0_u64, |acc, x| acc + x.objective_size)
    }

    /// Total executions
    #[inline]
    fn total_execs(&mut self) -> u64 {
        self.client_stats()
            .iter()
            .fold(0_u64, |acc, x| acc + x.executions)
    }

    /// Executions per second
    #[inline]
    fn execs_per_sec(&mut self) -> u64 {
        let cur_time = current_time();
        self.client_stats_mut()
            .iter_mut()
            .fold(0_u64, |acc, x| acc + x.execs_per_sec(cur_time))
    }

    /// The client stats for a specific id, creating new if it doesn't exist
    fn client_stats_mut_for(&mut self, client_id: u32) -> &mut ClientStats {
        let client_stat_count = self.client_stats().len();
        for _ in client_stat_count..(client_id + 1) as usize {
            self.client_stats_mut().push(ClientStats {
                last_window_time: current_time(),
                ..ClientStats::default()
            });
        }
        &mut self.client_stats_mut()[client_id as usize]
    }
}

/// Stats that print exactly nothing.
/// Not good for debuging, very good for speed.
pub struct NopStats {
    start_time: Duration,
    client_stats: Vec<ClientStats>,
}

impl Stats for NopStats {
    /// the client stats, mutable
    fn client_stats_mut(&mut self) -> &mut Vec<ClientStats> {
        &mut self.client_stats
    }

    /// the client stats
    fn client_stats(&self) -> &[ClientStats] {
        &self.client_stats
    }

    /// Time this fuzzing run stated
    fn start_time(&mut self) -> time::Duration {
        self.start_time
    }

    fn display(&mut self, _event_msg: String, _sender_id: u32) {}
}

impl NopStats {
    /// Create new [`NopStats`]
    #[must_use]
    pub fn new() -> Self {
        Self {
            start_time: current_time(),
            client_stats: vec![],
        }
    }
}

impl Default for NopStats {
    fn default() -> Self {
        Self::new()
    }
}

/// Tracking stats during fuzzing.
#[derive(Clone, Debug)]
pub struct SimpleStats<F>
where
    F: FnMut(String),
{
    print_fn: F,
    start_time: Duration,
    corpus_size: usize,
    client_stats: Vec<ClientStats>,
}

impl<F> Stats for SimpleStats<F>
where
    F: FnMut(String),
{
    /// the client stats, mutable
    fn client_stats_mut(&mut self) -> &mut Vec<ClientStats> {
        &mut self.client_stats
    }

    /// the client stats
    fn client_stats(&self) -> &[ClientStats] {
        &self.client_stats
    }

    /// Time this fuzzing run stated
    fn start_time(&mut self) -> time::Duration {
        self.start_time
    }

    fn display(&mut self, event_msg: String, sender_id: u32) {
        let fmt = format!(
            "[{} #{}] clients: {}, corpus: {}, objectives: {}, executions: {}, exec/sec: {}",
            event_msg,
            sender_id,
            self.client_stats().len(),
            self.corpus_size(),
            self.objective_size(),
            self.total_execs(),
            self.execs_per_sec()
        );
        (self.print_fn)(fmt);

        // Only print perf stats if the feature is enabled
        #[cfg(feature = "introspection")]
        {
            // Print the client performance stats.
            let fmt = format!(
                "Client {:03}:\n{}",
                sender_id, self.client_stats[sender_id as usize].introspection_stats
            );
            (self.print_fn)(fmt);

            // Separate the spacing just a bit
            (self.print_fn)("".to_string());
        }
    }
}

impl<F> SimpleStats<F>
where
    F: FnMut(String),
{
    /// Creates the stats, using the `current_time` as `start_time`.
    pub fn new(print_fn: F) -> Self {
        Self {
            print_fn,
            start_time: current_time(),
            corpus_size: 0,
            client_stats: vec![],
        }
    }

    /// Creates the stats with a given `start_time`.
    pub fn with_time(print_fn: F, start_time: time::Duration) -> Self {
        Self {
            print_fn,
            start_time,
            corpus_size: 0,
            client_stats: vec![],
        }
    }
}

#[macro_export]
macro_rules! start_timer {
    ($state:expr) => {{
        // Start the timer
        #[cfg(feature = "introspection")]
        $state.introspection_stats_mut().start_timer();
    }};
}

#[macro_export]
macro_rules! mark_feature_time {
    ($state:expr, $feature:expr) => {{
        // Mark the elapsed time for the given feature
        #[cfg(feature = "introspection")]
        $state.introspection_stats_mut().mark_feature_time($feature);
    }};
}

#[macro_export]
macro_rules! mark_feedback_time {
    ($state:expr) => {{
        // Mark the elapsed time for the given feature
        #[cfg(feature = "introspection")]
        $state.introspection_stats_mut().mark_feedback_time();
    }};
}

/// Client performance statistics
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct ClientPerfStats {
    /// Starting counter (in clock cycles from `read_time_counter`)
    start_time: u64,

    /// Current counter in the fuzzer (in clock cycles from `read_time_counter`
    current_time: u64,

    /// Clock cycles spent in the scheduler
    scheduler: u64,

    /// Clock cycles spent in the manager
    manager: u64,

    /// Current stage index to write the next stage benchmark time
    curr_stage: u8,

    /// Flag to dictate this stage is in use. Used during printing to not print the empty
    /// stages if they are not in use.
    stages_used: Vec<bool>,

    /// Clock cycles spent in the the various features of each stage
    stages: Vec<[u64; PerfFeature::Count as usize]>,

    /// Clock cycles spent in each feedback mechanism of the fuzzer.
    feedbacks: HashMap<String, u64>,

    /// Current time set by `start_timer`
    timer_start: Option<u64>,
}

/// Various features that are measured for performance
#[derive(Serialize, Deserialize, Debug, Clone)]
#[repr(u8)]
pub enum PerfFeature {
    /// Getting an input from the corpus
    GetInputFromCorpus = 0,

    /// Mutating the input
    Mutate = 1,

    /// Post-Exec Mutator callback
    MutatePostExec = 2,

    /// Actual time spent executing the target
    TargetExecution = 3,

    /// Time spent in `pre_exec`
    PreExec = 4,

    /// Time spent in `post_exec`
    PostExec = 5,

    /// Time spent in `observer` `pre_exec_all`
    PreExecObservers = 6,

    /// Time spent in `executor.observers_mut().post_exec_all`
    PostExecObservers = 7,

    /// Time spent getting the feedback from `is_interesting` from all feedbacks
    GetFeedbackInterestingAll = 8,

    /// Time spent getting the feedback from `is_interesting` from all objectives
    GetObjectivesInterestingAll = 9,

    /// Used as a counter to know how many elements are in [`PerfFeature`]. Must be the
    /// last value in the enum.
    Count, // !! No more values here since Count is last! !!
           // !! No more values here since Count is last! !!
}

// TryFromPrimitive requires `std` so these are implemented manually
impl From<PerfFeature> for usize {
    fn from(val: PerfFeature) -> usize {
        match val {
            PerfFeature::GetInputFromCorpus => PerfFeature::GetInputFromCorpus as usize,
            PerfFeature::Mutate => PerfFeature::Mutate as usize,
            PerfFeature::MutatePostExec => PerfFeature::MutatePostExec as usize,
            PerfFeature::TargetExecution => PerfFeature::TargetExecution as usize,
            PerfFeature::PreExec => PerfFeature::PreExec as usize,
            PerfFeature::PostExec => PerfFeature::PostExec as usize,
            PerfFeature::PreExecObservers => PerfFeature::PreExecObservers as usize,
            PerfFeature::PostExecObservers => PerfFeature::PostExecObservers as usize,
            PerfFeature::GetFeedbackInterestingAll => {
                PerfFeature::GetFeedbackInterestingAll as usize
            }
            PerfFeature::GetObjectivesInterestingAll => {
                PerfFeature::GetObjectivesInterestingAll as usize
            }
            PerfFeature::Count => PerfFeature::Count as usize,
        }
    }
}

// TryFromPrimitive requires `std` so these are implemented manually
impl From<usize> for PerfFeature {
    fn from(val: usize) -> PerfFeature {
        match val {
            0 => PerfFeature::GetInputFromCorpus,
            1 => PerfFeature::Mutate,
            2 => PerfFeature::MutatePostExec,
            3 => PerfFeature::TargetExecution,
            4 => PerfFeature::PreExec,
            5 => PerfFeature::PostExec,
            6 => PerfFeature::PreExecObservers,
            7 => PerfFeature::PostExecObservers,
            8 => PerfFeature::GetFeedbackInterestingAll,
            9 => PerfFeature::GetObjectivesInterestingAll,
            _ => panic!("Unknown PerfFeature: {}", val),
        }
    }
}

/// Number of features we can measure for performance
#[cfg(feature = "introspection")]
pub const NUM_PERF_FEATURES: usize = PerfFeature::Count as usize;

#[cfg(feature = "introspection")]
impl ClientPerfStats {
    /// Create a blank [`ClientPerfStats`] with the `start_time` and `current_time` with
    /// the current clock counter
    #[must_use]
    pub fn new() -> Self {
        let start_time = crate::bolts::cpu::read_time_counter();

        Self {
            start_time,
            current_time: start_time,
            scheduler: 0,
            manager: 0,
            curr_stage: 0,
            stages: vec![],
            stages_used: vec![],
            feedbacks: HashMap::new(),
            timer_start: None,
        }
    }

    /// Set the current time with the given time
    #[inline]
    pub fn set_current_time(&mut self, time: u64) {
        self.current_time = time;
    }

    /// Start a timer with the current time counter
    #[inline]
    pub fn start_timer(&mut self) {
        self.timer_start = Some(crate::bolts::cpu::read_time_counter());
    }

    /// Update the current [`ClientPerfStats`] with the given [`ClientPerfStats`]
    pub fn update(&mut self, stats: &ClientPerfStats) {
        self.set_current_time(stats.current_time);
        self.update_scheduler(stats.scheduler);
        self.update_manager(stats.manager);
        self.update_stages(&stats.stages);
        self.update_feedbacks(&stats.feedbacks);
    }

    /// Gets the elapsed time since the internal timer started. Resets the timer when
    /// finished execution.
    #[inline]
    fn mark_time(&mut self) -> u64 {
        match self.timer_start {
            None => {
                // Warning message if marking time without starting the timer first
                #[cfg(feature = "std")]
                eprint!("Attempted to `mark_time` without starting timer first.");

                // Return 0 for no time marked
                0
            }
            Some(timer_start) => {
                // Calculate the elapsed time
                let elapsed = crate::bolts::cpu::read_time_counter() - timer_start;

                // Reset the timer
                self.timer_start = None;

                // Return the elapsed time
                elapsed
            }
        }
    }

    /// Update the time spent in the scheduler with the elapsed time that we have seen
    #[inline]
    pub fn mark_scheduler_time(&mut self) {
        // Get the current elapsed time
        let elapsed = self.mark_time();

        // Add the time to the scheduler stat
        self.update_scheduler(elapsed);
    }

    /// Update the time spent in the scheduler with the elapsed time that we have seen
    #[inline]
    pub fn mark_manager_time(&mut self) {
        // Get the current elapsed time
        let elapsed = self.mark_time();

        // Add the time the manager stat
        self.update_manager(elapsed);
    }

    /// Update the time spent in the given [`PerfFeature`] with the elapsed time that we have seen
    #[inline]
    pub fn mark_feature_time(&mut self, feature: PerfFeature) {
        // Get the current elapsed time
        let elapsed = self.mark_time();

        // Add the time the the given feature
        self.update_feature(feature, elapsed);
    }

    /// Add the given `time` to the `scheduler` stats
    #[inline]
    pub fn update_scheduler(&mut self, time: u64) {
        self.scheduler = self
            .scheduler
            .checked_add(time)
            .expect("update_scheduler overflow");
    }

    /// Add the given `time` to the `manager` stats
    #[inline]
    pub fn update_manager(&mut self, time: u64) {
        self.manager = self
            .manager
            .checked_add(time)
            .expect("update_manager overflow");
    }

    /// Update the total stage counter and increment the stage counter for the next stage
    #[inline]
    pub fn finish_stage(&mut self) {
        // Increment the stage to the next index. The check is only done if this were to
        // be used past the length of the `self.stages` buffer
        self.curr_stage += 1;
    }

    /// Reset the stage index counter to zero
    #[inline]
    pub fn reset_stage_index(&mut self) {
        self.curr_stage = 0;
    }

    /// Update the time spent in the feedback
    pub fn update_feedback(&mut self, name: &str, time: u64) {
        self.feedbacks.insert(
            name.into(),
            self.feedbacks
                .get(name)
                .unwrap_or(&0)
                .checked_add(time)
                .expect("update_feedback overflow"),
        );
    }

    /// Update the time spent in all the feedbacks
    pub fn update_feedbacks(&mut self, feedbacks: &HashMap<String, u64>) {
        for (key, value) in feedbacks {
            self.update_feedback(key, *value);
        }
    }

    /// Update the time spent in the stages
    pub fn update_stages(&mut self, stages: &[[u64; PerfFeature::Count as usize]]) {
        if self.stages.len() < stages.len() {
            self.stages
                .resize(stages.len(), [0; PerfFeature::Count as usize]);
            self.stages_used.resize(stages.len(), false);
        }
        for (stage_index, features) in stages.iter().enumerate() {
            for (feature_index, feature) in features.iter().enumerate() {
                self.stages[stage_index][feature_index] = self.stages[stage_index][feature_index]
                    .checked_add(*feature)
                    .expect("Stage overflow");
            }
        }
    }

    /// Update the given [`PerfFeature`] with the given `time`
    pub fn update_feature(&mut self, feature: PerfFeature, time: u64) {
        // Get the current stage index as `usize`
        let stage_index: usize = self.curr_stage.try_into().unwrap();

        // Get the index of the given feature
        let feature_index: usize = feature.try_into().unwrap();

        if stage_index >= self.stages.len() {
            self.stages
                .resize(stage_index + 1, [0; PerfFeature::Count as usize]);
            self.stages_used.resize(stage_index + 1, false);
        }

        // Update the given feature
        self.stages[stage_index][feature_index] = self.stages[stage_index][feature_index]
            .checked_add(time)
            .expect("Stage overflow");

        // Set that the current stage is being used
        self.stages_used[stage_index] = true;
    }

    /// The elapsed cycles (or time)
    #[must_use]
    pub fn elapsed_cycles(&self) -> u64 {
        self.current_time - self.start_time
    }

    /// The amount of cycles the `manager` did
    #[must_use]
    pub fn manager_cycles(&self) -> u64 {
        self.manager
    }

    /// The amount of cycles the `scheduler` did
    #[must_use]
    pub fn scheduler_cycles(&self) -> u64 {
        self.scheduler
    }

    /// Iterator over all used stages
    pub fn used_stages(
        &self,
    ) -> impl Iterator<Item = (usize, &[u64; PerfFeature::Count as usize])> {
        let used = self.stages_used.clone();
        self.stages
            .iter()
            .enumerate()
            .filter(move |(stage_index, _)| used[*stage_index as usize])
    }

    /// A map of all `feedbacks`
    #[must_use]
    pub fn feedbacks(&self) -> &HashMap<String, u64> {
        &self.feedbacks
    }
}

#[cfg(feature = "introspection")]
impl core::fmt::Display for ClientPerfStats {
    #[allow(clippy::cast_precision_loss)]
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        // Calculate the elapsed time from the stats
        let elapsed: f64 = self.elapsed_cycles() as f64;

        // Calculate the percentages for each benchmark
        let scheduler_percent = self.scheduler as f64 / elapsed;
        let manager_percent = self.manager as f64 / elapsed;

        // Calculate the remaining percentage that has not been benchmarked
        let mut other_percent = 1.0;
        other_percent -= scheduler_percent;
        other_percent -= manager_percent;

        // Create the formatted string
        writeln!(
            f,
            "  {:6.4}: Scheduler\n  {:6.4}: Manager",
            scheduler_percent, manager_percent
        )?;

        // Calculate each stage
        // Make sure we only iterate over used stages
        for (stage_index, features) in self.used_stages() {
            // Write the stage header
            writeln!(f, "  Stage {}:", stage_index)?;

            for (feature_index, feature) in features.iter().enumerate() {
                // Calculate this current stage's percentage
                let feature_percent = *feature as f64 / elapsed;

                // Ignore this feature if it isn't used
                if feature_percent == 0.0 {
                    continue;
                }

                // Update the other percent by removing this current percent
                other_percent -= feature_percent;

                // Get the actual feature from the feature index for printing its name
                let feature: PerfFeature = feature_index.into();

                // Write the percentage for this feature
                writeln!(f, "    {:6.4}: {:?}", feature_percent, feature)?;
            }
        }

        writeln!(f, "  Feedbacks:")?;

        for (feedback_name, feedback_time) in self.feedbacks() {
            // Calculate this current stage's percentage
            let feedback_percent = *feedback_time as f64 / elapsed;

            // Ignore this feedback if it isn't used
            if feedback_percent == 0.0 {
                continue;
            }

            // Update the other percent by removing this current percent
            other_percent -= feedback_percent;

            // Write the percentage for this feedback
            writeln!(f, "    {:6.4}: {}", feedback_percent, feedback_name)?;
        }

        write!(f, "  {:6.4}: Not Measured", other_percent)?;

        Ok(())
    }
}

#[cfg(feature = "introspection")]
impl Default for ClientPerfStats {
    #[must_use]
    fn default() -> Self {
        Self::new()
    }
}