1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use crate::{
    basis::{Projection, Projector},
    core::*,
    eval::*,
    geometry::{Matrix, Space},
    transforms::{Transform, Identity},
};
use std::collections::HashMap;

macro_rules! impl_builders {
    ($ftype:ty => $fname:ident) => {
        impl<P: Space> LFA<P, $ftype> {
            pub fn $fname(projector: P) -> Self {
                let evaluator = <$ftype>::zeros(projector.dim());

                Self::new(projector, evaluator)
            }
        }

        impl<P: Space> From<P> for LFA<P, $ftype> {
            fn from(projector: P) -> Self { Self::$fname(projector) }
        }

        impl<P: Space, T> TransformedLFA<P, $ftype, T> {
            pub fn $fname(projector: P, transform: T) -> Self {
                let evaluator = <$ftype>::zeros(projector.dim());

                Self::new(projector, evaluator, transform)
            }
        }
    };
}

impl_builders!(ScalarFunction => scalar);
impl_builders!(PairFunction => pair);
impl_builders!(TripleFunction => triple);

/// Linear function approximator.
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct LFA<P, E> {
    pub projector: P,
    pub evaluator: E,
}

impl<P, E> LFA<P, E> {
    pub fn new(projector: P, evaluator: E) -> Self {
        LFA { projector, evaluator, }
    }
}

impl<P: Space> LFA<P, VectorFunction> {
    pub fn vector(projector: P, n_outputs: usize) -> Self {
        let evaluator = VectorFunction::zeros(projector.dim(), n_outputs);

        Self::new(projector, evaluator)
    }
}

impl<I: ?Sized, P, E> Approximator<I> for LFA<P, E>
where
    P: Projector<I>,
    E: Approximator<Projection>,
{
    type Value = E::Value;

    fn n_outputs(&self) -> usize {
        self.evaluator.n_outputs()
    }

    fn evaluate(&self, input: &I) -> EvaluationResult<Self::Value> {
        self.evaluator.evaluate(&self.projector.project(input))
    }

    fn update(&mut self, input: &I, update: Self::Value) -> UpdateResult<()> {
        self.evaluator.update(&self.projector.project(input), update)
    }

    fn adapt(&mut self, new_features: &HashMap<IndexT, IndexSet>) -> AdaptResult<usize> {
        self.evaluator.adapt(new_features)
    }
}

impl<P, E: Parameterised> Parameterised for LFA<P, E> {
    fn weights(&self) -> Matrix<f64> { self.evaluator.weights() }

    fn n_weights(&self) -> usize { self.evaluator.n_weights() }
}

/// Transformed linear function approximator.
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct TransformedLFA<P, E, T = Identity> {
    pub projector: P,
    pub evaluator: E,
    pub transform: T,
}

impl<P, E, T> TransformedLFA<P, E, T> {
    pub fn new(projector: P, evaluator: E, transform: T) -> Self {
        TransformedLFA { projector, evaluator, transform, }
    }
}

impl<P: Space, T> TransformedLFA<P, VectorFunction, T> {
    pub fn vector(projector: P, n_outputs: usize, transform: T) -> Self {
        let evaluator = VectorFunction::zeros(projector.dim(), n_outputs);

        Self::new(projector, evaluator, transform)
    }
}

impl<P, E, T> TransformedLFA<P, E, T>
where
    E: Approximator<Projection>,
    T: Transform<E::Value>,
{
    fn evaluate_primal(&self, primal: &Projection) -> EvaluationResult<E::Value> {
        self.evaluator.evaluate(primal).map(|v| self.transform.transform(v))
    }
}

impl<I: ?Sized, P, E, T> Approximator<I> for TransformedLFA<P, E, T>
where
    P: Projector<I>,
    E: Approximator<Projection>,
    T: Transform<E::Value>,
    E::Value: Gradient,
{
    type Value = E::Value;

    fn n_outputs(&self) -> usize {
        self.evaluator.n_outputs()
    }

    fn evaluate(&self, input: &I) -> EvaluationResult<Self::Value> {
        self.evaluate_primal(&self.projector.project(input))
    }

    fn update(&mut self, input: &I, update: Self::Value) -> UpdateResult<()> {
        let primal = self.projector.project(input);
        let value = self.evaluate_primal(&primal).unwrap();

        self.evaluator.update(&primal, self.transform.grad(value).chain(update))
    }

    fn adapt(&mut self, new_features: &HashMap<IndexT, IndexSet>) -> AdaptResult<usize> {
        self.evaluator.adapt(new_features)
    }
}

impl<P, E: Parameterised, T> Parameterised for TransformedLFA<P, E, T> {
    fn weights(&self) -> Matrix<f64> { self.evaluator.weights() }

    fn n_weights(&self) -> usize { self.evaluator.n_weights() }
}