1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the Leo library.

// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.

use super::*;
use crate::{expression::*, program::*, statement::*};

use std::{marker::PhantomData, sync::Arc};

pub struct MonoidalDirector<T: Monoid, R: MonoidalReducerExpression<T>> {
    reducer: R,
    _monoid: PhantomData<T>,
}

impl<T: Monoid, R: MonoidalReducerExpression<T>> MonoidalDirector<T, R> {
    pub fn new(reducer: R) -> Self {
        Self {
            reducer,
            _monoid: PhantomData,
        }
    }

    pub fn reducer(self) -> R {
        self.reducer
    }

    pub fn reduce_expression(&mut self, input: &Arc<Expression>) -> T {
        match &**input {
            Expression::ArrayAccess(e) => self.reduce_array_access(e),
            Expression::ArrayInit(e) => self.reduce_array_init(e),
            Expression::ArrayInline(e) => self.reduce_array_inline(e),
            Expression::ArrayRangeAccess(e) => self.reduce_array_range_access(e),
            Expression::Binary(e) => self.reduce_binary(e),
            Expression::Call(e) => self.reduce_call(e),
            Expression::CircuitAccess(e) => self.reduce_circuit_access(e),
            Expression::CircuitInit(e) => self.reduce_circuit_init(e),
            Expression::Ternary(e) => self.reduce_ternary_expression(e),
            Expression::Constant(e) => self.reduce_constant(e),
            Expression::TupleAccess(e) => self.reduce_tuple_access(e),
            Expression::TupleInit(e) => self.reduce_tuple_init(e),
            Expression::Unary(e) => self.reduce_unary(e),
            Expression::VariableRef(e) => self.reduce_variable_ref(e),
        }
    }

    pub fn reduce_array_access(&mut self, input: &ArrayAccessExpression) -> T {
        let array = self.reduce_expression(&input.array);
        let index = self.reduce_expression(&input.index);

        self.reducer.reduce_array_access(input, array, index)
    }

    pub fn reduce_array_init(&mut self, input: &ArrayInitExpression) -> T {
        let element = self.reduce_expression(&input.element);

        self.reducer.reduce_array_init(input, element)
    }

    pub fn reduce_array_inline(&mut self, input: &ArrayInlineExpression) -> T {
        let elements = input.elements.iter().map(|(x, _)| self.reduce_expression(x)).collect();

        self.reducer.reduce_array_inline(input, elements)
    }

    pub fn reduce_array_range_access(&mut self, input: &ArrayRangeAccessExpression) -> T {
        let array = self.reduce_expression(&input.array);
        let left = input.left.as_ref().map(|e| self.reduce_expression(e));
        let right = input.right.as_ref().map(|e| self.reduce_expression(e));

        self.reducer.reduce_array_range_access(input, array, left, right)
    }

    pub fn reduce_binary(&mut self, input: &BinaryExpression) -> T {
        let left = self.reduce_expression(&input.left);
        let right = self.reduce_expression(&input.right);

        self.reducer.reduce_binary(input, left, right)
    }

    pub fn reduce_call(&mut self, input: &CallExpression) -> T {
        let target = input.target.as_ref().map(|e| self.reduce_expression(e));
        let arguments = input.arguments.iter().map(|e| self.reduce_expression(e)).collect();

        self.reducer.reduce_call(input, target, arguments)
    }

    pub fn reduce_circuit_access(&mut self, input: &CircuitAccessExpression) -> T {
        let target = input.target.as_ref().map(|e| self.reduce_expression(e));

        self.reducer.reduce_circuit_access(input, target)
    }

    pub fn reduce_circuit_init(&mut self, input: &CircuitInitExpression) -> T {
        let values = input.values.iter().map(|(_, e)| self.reduce_expression(e)).collect();

        self.reducer.reduce_circuit_init(input, values)
    }

    pub fn reduce_ternary_expression(&mut self, input: &TernaryExpression) -> T {
        let condition = self.reduce_expression(&input.condition);
        let if_true = self.reduce_expression(&input.if_true);
        let if_false = self.reduce_expression(&input.if_false);

        self.reducer
            .reduce_ternary_expression(input, condition, if_true, if_false)
    }

    pub fn reduce_constant(&mut self, input: &Constant) -> T {
        self.reducer.reduce_constant(input)
    }

    pub fn reduce_tuple_access(&mut self, input: &TupleAccessExpression) -> T {
        let tuple_ref = self.reduce_expression(&input.tuple_ref);

        self.reducer.reduce_tuple_access(input, tuple_ref)
    }

    pub fn reduce_tuple_init(&mut self, input: &TupleInitExpression) -> T {
        let values = input.elements.iter().map(|e| self.reduce_expression(e)).collect();

        self.reducer.reduce_tuple_init(input, values)
    }

    pub fn reduce_unary(&mut self, input: &UnaryExpression) -> T {
        let inner = self.reduce_expression(&input.inner);

        self.reducer.reduce_unary(input, inner)
    }

    pub fn reduce_variable_ref(&mut self, input: &VariableRef) -> T {
        self.reducer.reduce_variable_ref(input)
    }
}

impl<T: Monoid, R: MonoidalReducerStatement<T>> MonoidalDirector<T, R> {
    pub fn reduce_statement(&mut self, input: &Arc<Statement>) -> T {
        match &**input {
            Statement::Assign(s) => self.reduce_assign(s),
            Statement::Block(s) => self.reduce_block(s),
            Statement::Conditional(s) => self.reduce_conditional_statement(s),
            Statement::Console(s) => self.reduce_console(s),
            Statement::Definition(s) => self.reduce_definition(s),
            Statement::Expression(s) => self.reduce_expression_statement(s),
            Statement::Iteration(s) => self.reduce_iteration(s),
            Statement::Return(s) => self.reduce_return(s),
        }
    }

    pub fn reduce_assign_access(&mut self, input: &AssignAccess) -> T {
        let (left, right) = match input {
            AssignAccess::ArrayRange(left, right) => (
                left.as_ref().map(|e| self.reduce_expression(e)),
                right.as_ref().map(|e| self.reduce_expression(e)),
            ),
            AssignAccess::ArrayIndex(index) => (Some(self.reduce_expression(index)), None),
            _ => (None, None),
        };

        self.reducer.reduce_assign_access(input, left, right)
    }

    pub fn reduce_assign(&mut self, input: &AssignStatement) -> T {
        let accesses = input
            .target_accesses
            .iter()
            .map(|x| self.reduce_assign_access(x))
            .collect();
        let value = self.reduce_expression(&input.value);

        self.reducer.reduce_assign(input, accesses, value)
    }

    pub fn reduce_block(&mut self, input: &BlockStatement) -> T {
        let statements = input.statements.iter().map(|x| self.reduce_statement(x)).collect();

        self.reducer.reduce_block(input, statements)
    }

    pub fn reduce_conditional_statement(&mut self, input: &ConditionalStatement) -> T {
        let condition = self.reduce_expression(&input.condition);
        let if_true = self.reduce_statement(&input.result);
        let if_false = input.next.as_ref().map(|s| self.reduce_statement(s));

        self.reducer
            .reduce_conditional_statement(input, condition, if_true, if_false)
    }

    pub fn reduce_formatted_string(&mut self, input: &FormattedString) -> T {
        let parameters = input.parameters.iter().map(|e| self.reduce_expression(e)).collect();

        self.reducer.reduce_formatted_string(input, parameters)
    }

    pub fn reduce_console(&mut self, input: &ConsoleStatement) -> T {
        let argument = match &input.function {
            ConsoleFunction::Assert(e) => self.reduce_expression(e),
            ConsoleFunction::Debug(f) | ConsoleFunction::Error(f) | ConsoleFunction::Log(f) => {
                self.reduce_formatted_string(f)
            }
        };

        self.reducer.reduce_console(input, argument)
    }

    pub fn reduce_definition(&mut self, input: &DefinitionStatement) -> T {
        let value = self.reduce_expression(&input.value);

        self.reducer.reduce_definition(input, value)
    }

    pub fn reduce_expression_statement(&mut self, input: &ExpressionStatement) -> T {
        let value = self.reduce_expression(&input.expression);

        self.reducer.reduce_expression_statement(input, value)
    }

    pub fn reduce_iteration(&mut self, input: &IterationStatement) -> T {
        let start = self.reduce_expression(&input.start);
        let stop = self.reduce_expression(&input.stop);
        let body = self.reduce_statement(&input.body);

        self.reducer.reduce_iteration(input, start, stop, body)
    }

    pub fn reduce_return(&mut self, input: &ReturnStatement) -> T {
        let value = self.reduce_expression(&input.expression);

        self.reducer.reduce_return(input, value)
    }
}

#[allow(dead_code)]
impl<T: Monoid, R: MonoidalReducerProgram<T>> MonoidalDirector<T, R> {
    fn reduce_function(&mut self, input: &Arc<FunctionBody>) -> T {
        let body = self.reduce_statement(&input.body);

        self.reducer.reduce_function(input, body)
    }

    fn reduce_circuit_member(&mut self, input: &CircuitMemberBody) -> T {
        let function = match input {
            CircuitMemberBody::Function(f) => Some(self.reduce_function(f)),
            _ => None,
        };

        self.reducer.reduce_circuit_member(input, function)
    }

    fn reduce_circuit(&mut self, input: &Arc<CircuitBody>) -> T {
        let members = input
            .members
            .borrow()
            .iter()
            .map(|(_, member)| self.reduce_circuit_member(member))
            .collect();

        self.reducer.reduce_circuit(input, members)
    }

    fn reduce_program(&mut self, input: &Program) -> T {
        let input = input.borrow();
        let imported_modules = input
            .imported_modules
            .iter()
            .map(|(_, import)| self.reduce_program(import))
            .collect();
        let test_functions = input
            .test_functions
            .iter()
            .map(|(_, (f, _))| self.reduce_function(f))
            .collect();
        let functions = input.functions.iter().map(|(_, f)| self.reduce_function(f)).collect();
        let circuits = input.circuits.iter().map(|(_, c)| self.reduce_circuit(c)).collect();

        self.reducer
            .reduce_program(&input, imported_modules, test_functions, functions, circuits)
    }
}