1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//! Design Circular Queue [leetcode: design_circular_queue](https://leetcode.com/problems/design-circular-queue/)
//!
//! Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
//!
//! One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
//!
//! Your implementation should support following operations:
//!
//! * `MyCircularQueue(k)`: Constructor, set the size of the queue to be k.
//! * `Front`: Get the front item from the queue. If the queue is empty, return -1.
//! * `Rear`: Get the last item from the queue. If the queue is empty, return -1.
//! * `enQueue(value)`: Insert an element into the circular queue. Return true if the operation is successful.
//! * `deQueue()`: Delete an element from the circular queue. Return true if the operation is successful.
//! * `isEmpty()`: Checks whether the circular queue is empty or not.
//! * `isFull()`: Checks whether the circular queue is full or not.
//!
//! ***Example:***
//!
//! ```
//! MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
//! circularQueue.enQueue(1);  // return true
//! circularQueue.enQueue(2);  // return true
//! circularQueue.enQueue(3);  // return true
//! circularQueue.enQueue(4);  // return false, the queue is full
//! circularQueue.Rear();  // return 3
//! circularQueue.isFull();  // return true
//! circularQueue.deQueue();  // return true
//! circularQueue.enQueue(4);  // return true
//! circularQueue.Rear();  // return 4
//! ```
//!
//! **Note:**
//!
//! All values will be in the range of [0, 1000].
//! The number of operations will be in the range of [1, 1000].
//! Please do not use the built-in Queue library.

/// # Solutions
///
/// # Approach 1:
///
/// * Time complexity: O(1)
///
/// * Space complexity: O(n)
///
/// * Runtime: 4 ms
/// * Memory: 2.8 MB
///
/// ```rust
/// struct MyCircularQueue {
///     items: Vec<Option<i32>>,
///     head: i32,
///     tail: i32,
///     capacity: i32,
///     size: i32,
/// }
///
///
/// /**
///  * `&self` means the method takes an immutable reference.
///  * If you need a mutable reference, change it to `&mut self` instead.
///  */
/// impl MyCircularQueue {
///
///     /** Initialize your data structure here. Set the size of the queue to be k. */
///     fn new(k: i32) -> Self {
///         MyCircularQueue {
///             items: vec![None; k as usize],
///             head: 0,
///             tail: 0,
///             capacity: k,
///             size: 0,
///         }
///     }
///
///     /** Insert an element into the circular queue. Return true if the operation is successful. */
///     fn en_queue(&mut self, value: i32) -> bool {
///         if self.is_full() { return false; }
///
///         self.items[self.tail as usize] = Some(value);
///         self.tail = (self.tail + 1) % self.capacity;
///         self.size += 1;
///
///         true
///     }
///
///     /** Delete an element from the circular queue. Return true if the operation is successful. */
///     fn de_queue(&mut self) -> bool {
///         if self.is_empty() { return false; }
///
///         self.items[self.head as usize] = None;
///         self.head = (self.head + 1) % self.capacity;
///         self.size -= 1;
///
///         true
///     }
///
///     /** Get the front item from the queue. */
///     fn front(&self) -> i32 {
///         self.items[self.head as usize].unwrap_or(-1)
///     }
///
///     /** Get the last item from the queue. */
///     fn rear(&self) -> i32 {
///         let tmp_tail = if self.tail == 0 { self.capacity - 1 } else { self.tail - 1 };
///         self.items[tmp_tail as usize].unwrap_or(-1)
///     }
///
///     /** Checks whether the circular queue is empty or not. */
///     fn is_empty(&self) -> bool {
///         self.size == 0
///     }
///
///     /** Checks whether the circular queue is full or not. */
///     fn is_full(&self) -> bool {
///         self.size == self.capacity
///     }
/// }
///
/// /**
///  * Your MyCircularQueue object will be instantiated and called as such:
///  * let obj = MyCircularQueue::new(k);
///  * let ret_1: bool = obj.en_queue(value);
///  * let ret_2: bool = obj.de_queue();
///  * let ret_3: i32 = obj.front();
///  * let ret_4: i32 = obj.rear();
///  * let ret_5: bool = obj.is_empty();
///  * let ret_6: bool = obj.is_full();
///  */
/// ```
///
#[allow(dead_code)]
pub struct MyCircularQueue {
    items: Vec<Option<i32>>,
    head: i32,
    tail: i32,
    capacity: i32,
    size: i32,
}