1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//! Binary Tree Level Order Traversal[leetcode: binary_tree_level_order_traversal](https://leetcode.com/problems/binary-tree-level-order-traversal/)
//!
//! Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).
//!
//! For example:
//! Given binary tree `[3,9,20,null,null,15,7]`,
//!
//! ```
//!     3
//!    / \
//!   9  20
//!     /  \
//!    15   7
//! ```
//! return its level order traversal as:
//! ```
//! [
//!   [3],
//!   [9,20],
//!   [15,7]
//! ]
//! ```

use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
/// # Solutions
///
/// # Approach 1: BFS
///
/// * Time complexity: O(n)
///
/// * Space complexity: O(n)
///
/// * Runtime: 0 ms
///
/// * Memory: 2.6 MB
///
/// ```rust
/// // Definition for a binary tree node.
/// // #[derive(Debug, PartialEq, Eq)]
/// // pub struct TreeNode {
/// //   pub val: i32,
/// //   pub left: Option<Rc<RefCell<TreeNode>>>,
/// //   pub right: Option<Rc<RefCell<TreeNode>>>,
/// // }
/// //
/// // impl TreeNode {
/// //   #[inline]
/// //   pub fn new(val: i32) -> Self {
/// //     TreeNode {
/// //       val,
/// //       left: None,
/// //       right: None
/// //     }
/// //   }
/// // }
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use std::collections::VecDeque;
/// impl Solution {
///     pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
///         let mut result: Vec<Vec<i32>> = vec![];
///         if root.is_none() { return result; }
///
///         let mut deque: VecDeque<Option<Rc<RefCell<TreeNode>>>> = VecDeque::new();
///         deque.push_back(root);
///
///         while !deque.is_empty() {
///             let mut current_level = vec![];
///             let mut added = false;
///             let level_size = deque.len();
///
///             for _i in 0..level_size {
///                 let n = deque.pop_front();
///                 if let Some(Some(node)) = n {
///                     current_level.push(node.borrow().val);
///                     added = true;
///                     if !node.borrow().left.is_none() { deque.push_back(node.borrow().left.clone()); }
///                     if !node.borrow().right.is_none() { deque.push_back(node.borrow().right.clone()); }
///                 }
///             }
///
///             if !added { break; }
///
///             result.push(current_level);
///         }
///
///         result
///     }
/// }
/// ```
///
/// # Approach 2: DFS
///
/// * Time complexity: O(n)
///
/// * Space complexity: O(n)
///
/// * Runtime: 0 ms
///
/// * Memory: 2.7 MB
///
/// ```rust
/// // Definition for a binary tree node.
/// // #[derive(Debug, PartialEq, Eq)]
/// // pub struct TreeNode {
/// //   pub val: i32,
/// //   pub left: Option<Rc<RefCell<TreeNode>>>,
/// //   pub right: Option<Rc<RefCell<TreeNode>>>,
/// // }
/// //
/// // impl TreeNode {
/// //   #[inline]
/// //   pub fn new(val: i32) -> Self {
/// //     TreeNode {
/// //       val,
/// //       left: None,
/// //       right: None
/// //     }
/// //   }
/// // }
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// impl Solution {
///     pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
///         let mut result: Vec<Vec<i32>> = vec![];
///         Self::_dfs(&mut result, root, 0);
///         result
///     }
///
///     pub fn _dfs(result: &mut Vec<Vec<i32>>, root: Option<Rc<RefCell<TreeNode>>>, level: usize) {
///         if let Some(node) = root {
///             if result.len() == level {
///                 result.push(vec![node.borrow().val]);
///             } else {
///                 result[level].push(node.borrow().val);
///             }
///             Self::_dfs(result, node.borrow().left.clone(), level + 1);
///             Self::_dfs(result, node.borrow().right.clone(), level + 1)
///         }
///     }
/// }
/// ```
///
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
    let mut result: Vec<Vec<i32>> = vec![];
    if root.is_none() { return result; }

    let mut deque: VecDeque<Option<Rc<RefCell<TreeNode>>>> = VecDeque::new();
    deque.push_back(root);

    while !deque.is_empty() {
        let mut current_level = vec![];
        let mut added = false;
        let level_size = deque.len();

        for _i in 0..level_size {
            let n = deque.pop_front();
            if let Some(Some(node)) = n {
                current_level.push(node.borrow().val);
                added = true;
                if !node.borrow().left.is_none() { deque.push_back(node.borrow().left.clone()); }
                if !node.borrow().right.is_none() { deque.push_back(node.borrow().right.clone()); }
            }
        }

        if !added { break; }

        result.push(current_level);
    }

    result
}
// Definition for a binary tree node.
#[derive(Debug, PartialEq, Eq)]
pub struct TreeNode {
  pub val: i32,
  pub left: Option<Rc<RefCell<TreeNode>>>,
  pub right: Option<Rc<RefCell<TreeNode>>>,
}

impl TreeNode {
  #[inline]
  pub fn new(val: i32) -> Self {
    TreeNode {
      val,
      left: None,
      right: None
    }
  }
}