1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! Sqrt(x) [leetcode: sqrt(x)](https://leetcode.com/problems/sqrtx/)
//!
//! Implement `int sqrt(int x)`.
//!
//! Compute and return the square root of *x*, where *x* is guaranteed to be a non-negative integer.
//!
//! Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.
//!
//! **Example 1:**
//! ```
//! Input: 4
//! Output: 2
//! ```
//!
//! **Example 2:**
//! ```
//! Input: 8
//! Output: 2
//! Explanation: The square root of 8 is 2.82842..., and since
//!              the decimal part is truncated, 2 is returned.
//! ```
//!
/// # Solutions for i32
///
/// # Approach 1: Binary Search
///
/// * Time complexity: log(n)
///
/// * Space complexity: log(n)
///
/// * Runtime: 0 ms
/// * Memory: 2.4 MB
///
/// ```rust
/// impl Solution {
///     pub fn my_sqrt(x: i32) -> i32 {
///         if x == 0 || x == 1 { return x; }
///
///         let mut left = 1;
///         let mut right = x;
///         let mut res = 1;
///
///         while left <= right {
///             let mid = (right - left) / 2 + left;
///             if x / mid == mid { return mid; };
///             if mid > x / mid {
///                 right = mid - 1;
///             } else {
///                 left = mid + 1;
///                 res = mid;
///             }
///         }
///         res
///     }
/// }
/// ```
///
/// # Approach 2: Newton's Method
///
/// * Time complexity: 𝑙𝑜𝑔2(𝑁)
///
/// * Space complexity:
///
/// * Runtime: 0 ms
/// * Memory: 2.4 MB
///
/// ```rust
/// impl Solution {
///     pub fn my_sqrt(x: i32) -> i32 {
///         if x == 0 { return x; }
///
///         let x = x as usize;
///         let mut r = x;
///         while r > x / r {
///             r = (r + x / r) / 2;
///         }
///         r as i32
///     }
/// }
/// ```
///
/// # Approach 3: Lomont's Paper
///
/// * Time complexity:
///
/// * Space complexity:
///
/// * Runtime: 0 ms
/// * Memory: 2.4 MB
///
/// ```rust
/// use::std::mem;
///
/// impl Solution {
///     pub fn my_sqrt(x: i32) -> i32 {
///         let mut n = x as f64;
///         let half = 0.5 * n;
///         let mut i = unsafe {
///             std::mem::transmute::<f64, i64>(n)
///         };
///         i = 0x5fe6ec85e7de30da - (i>>1);
///         n = unsafe{
///             std::mem::transmute::<i64, f64>(i)
///         };
///         for _i in 0..3 {
///             n = n * (1.5 - half * n * n);
///         }
///         (1.0 / n) as i32
///     }
/// }
/// ```
///
pub fn my_sqrt(x: i32) -> i32 {
    if x == 0 || x == 1 { return x; }

    let mut left = 1;
    let mut right = x;
    let mut res = 1;

    while left <= right {
        let mid = (right - left) / 2 + left;
        if x / mid == mid { return mid; };
        if mid > x / mid {
            right = mid - 1;
        } else {
            left = mid + 1;
            res = mid;
        }
    }
    res
}

/// # Solutions for f64
///
/// # Approach 1: Binary Search
///
/// * Time complexity: log(n)
///
/// * Space complexity: log(n)
///
/// * Runtime: 0 ms
/// * Memory: 2.4 MB
///
/// ```rust
/// impl Solution {
///     fn my_sqrt_f64(x: i32, precision: f64) -> f64 {
///         if x == 0 || x == 1 { return x as f64; }
///
///         let mut left = 0f64;
///         let mut right = x as f64;
///         let mut res = 0f64;
///
///         while left <= right {
///             let mid: f64 = (right - left) / 2f64 + left;
///             if (right - left).abs() < precision { return mid; }
///             if mid > x as f64 / mid {
///                 right = mid;
///             } else {
///                 left = mid;
///                 res = mid
///             }
///         }
///         res
///     }
/// }
/// ```
///
/// # Approach 2: Newton's Method
///
/// * Time complexity: 𝑙𝑜𝑔2(𝑁)
///
/// * Space complexity:
///
/// * Runtime: 0 ms
/// * Memory: 2.4 MB
///
/// ```rust
/// impl Solution {
///     pub fn my_sqrt_f64(x: i32) -> f64 {
///         if x == 0 { return x as f64; }
///
///         let x = x as f64;
///         let mut r = x;
///         while r > x / r {
///             r = (r + x / r) / 2.0;
///         }
///         r
///     }
/// }
/// ```
///
pub fn my_sqrt_f64(x: i32, precision: f64) -> f64 {
    if x == 0 || x == 1 { return x as f64; }

    let mut left = 0f64;
    let mut right = x as f64;
    let mut res = 0f64;

    while left <= right {
        let mid: f64 = (right - left) / 2.0 + left;
        if (right - left).abs() < precision { return mid; }
        if mid > x as f64 / mid {
            right = mid;
        } else {
            left = mid;
            res = mid
        }
    }
    res
}