1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
//! [<img alt="github" src="https://img.shields.io/badge/github-udoprog/leaky--bucket-8da0cb?style=for-the-badge&logo=github" height="20">](https://github.com/udoprog/leaky-bucket)
//! [<img alt="crates.io" src="https://img.shields.io/crates/v/leaky-bucket.svg?style=for-the-badge&color=fc8d62&logo=rust" height="20">](https://crates.io/crates/leaky-bucket)
//! [<img alt="docs.rs" src="https://img.shields.io/badge/docs.rs-leaky--bucket-66c2a5?style=for-the-badge&logoColor=white&logo=" height="20">](https://docs.rs/leaky-bucket)
//!
//! A token-based rate limiter based on the [leaky bucket] algorithm.
//!
//! If the bucket overflows and goes over its max configured capacity, the task
//! that tried to acquire the tokens will be suspended until the required number
//! of tokens has been drained from the bucket.
//!
//! Since this crate uses timing facilities from tokio it has to be used within
//! a Tokio runtime with the [`time` feature] enabled.
//!
//! This library has some neat features, which includes:
//!
//! **Not requiring a background task**. This is usually needed by token bucket
//! rate limiters to drive progress. Instead, one of the waiting tasks
//! temporarily assumes the role as coordinator (called the *core*). This
//! reduces the amount of tasks needing to sleep, which can be a source of
//! jitter for imprecise sleeping implementations and tight limiters. See below
//! for more details.
//!
//! **Dropped tasks** release any resources they've reserved. So that
//! constructing and cancellaing asynchronous tasks to not end up taking up wait
//! slots it never uses which would be the case for cell-based rate limiters.
//!
//! <br>
//!
//! ## Usage
//!
//! The core type is the [`RateLimiter`] type, which allows for limiting the
//! throughput of a section using its [`acquire`] and [`acquire_one`] methods.
//!
//! ```
//! use leaky_bucket::RateLimiter;
//! use std::time;
//!
//! #[tokio::main]
//! async fn main() {
//!     let limiter = RateLimiter::builder()
//!         .max(10)
//!         .initial(0)
//!         .refill(5)
//!         .build();
//!
//!     let start = time::Instant::now();
//!
//!     println!("Waiting for permit...");
//!
//!     // Should take ~400 ms to acquire in total.
//!     let a = limiter.acquire(7);
//!     let b = limiter.acquire(3);
//!     let c = limiter.acquire(10);
//!
//!     let ((), (), ()) = tokio::join!(a, b, c);
//!
//!     println!(
//!         "I made it in {:?}!",
//!         time::Instant::now().duration_since(start)
//!     );
//! }
//! ```
//!
//! <br>
//!
//! ## Implementation details
//!
//! Each rate limiter has two acquisition modes. A fast path and a slow path.
//! The fast path is used if the desired number of tokens are readily available,
//! and involves incrementing an atomic counter indicating that the acquired
//! number of tokens have been added to the bucket.
//!
//! If this counter goes over its configured maximum capacity, it overflows into
//! a slow path. Here one of the acquiring tasks will switch over to work as a
//! *core*. This is known as *core switching*.
//!
//! ```
//! use leaky_bucket::RateLimiter;
//! use std::time;
//!
//! # #[tokio::main] async fn main() {
//! let limiter = RateLimiter::builder()
//!     .initial(10)
//!     .interval(time::Duration::from_millis(100))
//!     .build();
//!
//! // This is instantaneous since the rate limiter starts with 10 tokens to
//! // spare.
//! limiter.acquire(10).await;
//!
//! // This however needs to core switch and wait for a while until the desired
//! // number of tokens is available.
//! limiter.acquire(3).await;
//! # }
//! ```
//!
//! The core is responsible for sleeping for the configured interval so that
//! more tokens can be added. After which it ensures that any tasks that are
//! waiting to acquire including itself are appropriately unsuspended.
//!
//! On-demand core switching is what allows this rate limiter implementation to
//! work without a coordinating background thread. But we need to ensure that
//! any asynchronous tasks that uses [`RateLimiter`] must either run an
//! [`acquire`] call to completion, or be *cancelled* by being dropped.
//!
//! If none of these hold, the core might leak and be locked indefinitely
//! preventing any future use of the rate limiter from making progress. This is
//! similar to if you would lock an asynchronous [`Mutex`] but never drop its
//! guard.
//!
//! > You can run this example with:
//! >
//! > ```sh
//! > cargo run --example block-forever
//! > ```
//!
//! ```
//! use leaky_bucket::RateLimiter;
//! use std::future::Future;
//! use std::sync::Arc;
//! use std::task::Context;
//!
//! struct Waker;
//! # impl std::task::Wake for Waker { fn wake(self: Arc<Self>) { } }
//!
//! # #[tokio::main] async fn main() {
//! let limiter = Arc::new(RateLimiter::builder().build());
//!
//! let waker = Arc::new(Waker).into();
//! let mut cx = Context::from_waker(&waker);
//!
//! let mut a0 = Box::pin(limiter.acquire(1));
//! // Poll once to ensure that the core task is assigned.
//! assert!(a0.as_mut().poll(&mut cx).is_pending());
//! assert!(a0.is_core());
//!
//! // We leak the core task, preventing the rate limiter from making progress
//! // by assigning new core tasks.
//! std::mem::forget(a0);
//!
//! // Awaiting acquire here would block forever.
//! // limiter.acquire(1).await;
//! # }
//! ```
//!
//! <br>
//!
//! ## Fairness
//!
//! By default [`RateLimiter`] uses a *fair* scheduler. This ensures that the
//! core task makes progress even if there are many tasks waiting to acquire
//! tokens. As a result it causes more frequent core switching, increasing the
//! total work needed. An unfair scheduler is expected to do a bit less work
//! under contention. But without fair scheduling some tasks might end up taking
//! longer to acquire than expected.
//!
//! This behavior can be tweaked with the [`Builder::fair`] option.
//!
//! ```
//! use leaky_bucket::RateLimiter;
//!
//! let limiter = RateLimiter::builder()
//!     .fair(false)
//!     .build();
//! ```
//!
//! The `unfair-scheduling` example can showcase this phenomenon.
//!
//! ```sh
//! cargh run --example unfair-scheduling
//! ```
//!
//! ```text
//! # fair
//! Max: 1011ms, Total: 1012ms
//! Timings:
//!  0: 101ms
//!  1: 101ms
//!  2: 101ms
//!  3: 101ms
//!  4: 101ms
//!  ...
//! # unfair
//! Max: 1014ms, Total: 1014ms
//! Timings:
//!  0: 1014ms
//!  1: 101ms
//!  2: 101ms
//!  3: 101ms
//!  4: 101ms
//!  ...
//! ```
//!
//! As can be seen above the first task in the *unfair* scheduler takes longer
//! to run because it prioritises releasing other tasks waiting to acquire over
//! itself.
//!
//! [`acquire_one`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.RateLimiter.html#method.acquire_one
//! [`acquire`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.RateLimiter.html#method.acquire
//! [`Builder::fair`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.Builder.html#method.fair
//! [`Mutex`]: https://docs.rs/tokio/1/tokio/sync/struct.Mutex.html
//! [`RateLimiter`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.RateLimiter.html
//! [`time` feature]: https://docs.rs/tokio/1/tokio/#feature-flags
//! [leaky bucket]: https://en.wikipedia.org/wiki/Leaky_bucket

#![no_std]
#![deny(missing_docs)]

extern crate alloc;

#[macro_use]
extern crate std;

use core::cell::UnsafeCell;
use core::convert::TryFrom as _;
use core::fmt;
use core::future::Future;
use core::marker;
use core::mem;
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::{AtomicBool, Ordering};
use core::task::{Context, Poll, Waker};

use alloc::sync::Arc;

use parking_lot::{Mutex, MutexGuard};
use tokio::time;
use tracing::trace;

#[doc(hidden)]
pub mod linked_list;
use self::linked_list::{LinkedList, Node};

/// Default factor for how to calculate max refill value.
const DEFAULT_REFILL_MAX_FACTOR: usize = 10;

/// Interval to bump the shared mutex guard to allow other parts of the system
/// to make process. Processes which loop should use this number to determine
/// how many times it should loop before calling [MutexGuard::bump].
///
/// If we do not respect this limit we might inadvertently end up starving other
/// tasks from making progress so that they can unblock.
const BUMP_LIMIT: usize = 16;

/// Linked task state.
struct Task {
    /// Remaining tokens that need to be satisfied.
    remaining: usize,
    /// Link to [Linking::complete].
    complete: Option<ptr::NonNull<AtomicBool>>,
    /// The waker associated with the node.
    waker: Option<Waker>,
}

impl Task {
    /// Construct a new task state with the given permits remaining.
    const fn new() -> Self {
        Self {
            remaining: 0,
            complete: None,
            waker: None,
        }
    }

    /// Test if the current node is completed.
    fn is_completed(&self) -> bool {
        self.remaining == 0
    }

    /// Fill the current node from the given pool of tokens and modify it.
    fn fill(&mut self, current: &mut usize) {
        let removed = usize::min(self.remaining, *current);
        self.remaining -= removed;
        *current -= removed;
    }
}

/// A borrowed rate limiter.
struct BorrowedRateLimiter<'a>(&'a RateLimiter);

impl AsRef<RateLimiter> for BorrowedRateLimiter<'_> {
    fn as_ref(&self) -> &RateLimiter {
        self.0
    }
}

struct Critical {
    /// Current balance of tokens. A value of 0 means that it is empty. Goes up
    /// to [`RateLimiter::max`].
    balance: usize,
    /// Waiter list.
    waiters: LinkedList<Task>,
    /// The deadline for when more tokens can be be added.
    deadline: time::Instant,
    /// If the core is available.
    available: bool,
}

impl Critical {
    /// Release the current core. Beyond this point the current task may no
    /// longer interact exclusively with the core.
    #[tracing::instrument(skip(self), level = "trace")]
    fn release(&mut self) {
        trace!("releasing core");
        self.available = true;

        // Find another task that might take over as core. Once it has acquired
        // core status it will have to make sure it is no longer linked into the
        // wait queue.
        //
        // We have to do this, because another task might miss that the core is
        // available since it's hidden behind an atomic, so we wake any task up
        // to ensure that it will always be picked up.
        //
        // Safety: We're holding the lock guard to all the waiters so we can be
        // certain that we have exclusive access.
        unsafe {
            if let Some(mut node) = self.waiters.front_mut() {
                trace!(node = ?node, "waking next core");

                if let Some(waker) = node.as_mut().waker.take() {
                    waker.wake();
                }
            }
        }
    }
}

/// A token-bucket rate limiter.
pub struct RateLimiter {
    /// Tokens to add every `per` duration.
    refill: usize,
    /// Interval in milliseconds to add tokens.
    interval: time::Duration,
    /// Max number of tokens associated with the rate limiter.
    max: usize,
    /// If the rate limiter is fair or not.
    fair: bool,
    /// Critical state of the rate limiter.
    critical: Mutex<Critical>,
}

impl RateLimiter {
    /// Construct a new [`Builder`] for a [`RateLimiter`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time::Duration;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .initial(100)
    ///     .refill(100)
    ///     .max(1000)
    ///     .interval(Duration::from_millis(250))
    ///     .fair(false)
    ///     .build();
    /// ```
    pub fn builder() -> Builder {
        Builder::default()
    }

    /// Get the refill amount  of this rate limiter as set through
    /// [`Builder::refill`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(1024)
    ///     .build();
    ///
    /// assert_eq!(limiter.refill(), 1024);
    /// ```
    pub fn refill(&self) -> usize {
        self.refill
    }

    /// Get the refill interval of this rate limiter as set through
    /// [`Builder::interval`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(Duration::from_millis(1000))
    ///     .build();
    ///
    /// assert_eq!(limiter.interval(), Duration::from_millis(1000));
    /// ```
    pub fn interval(&self) -> time::Duration {
        self.interval
    }

    /// Get the max value of this rate limiter as set through [`Builder::max`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .max(1024)
    ///     .build();
    ///
    /// assert_eq!(limiter.max(), 1024);
    /// ```
    pub fn max(&self) -> usize {
        self.max
    }

    /// Test if the current rate limiter is fair as specified through
    /// [`Builder::fair`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .fair(true)
    ///     .build();
    ///
    /// assert_eq!(limiter.is_fair(), true);
    /// ```
    pub fn is_fair(&self) -> bool {
        self.fair
    }

    /// Get the current token balance.
    ///
    /// This indicates how many tokens can be requested without blocking.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder()
    ///     .initial(100)
    ///     .build();
    ///
    /// assert_eq!(limiter.balance(), 100);
    /// limiter.acquire(10).await;
    /// assert_eq!(limiter.balance(), 90);
    /// # }
    /// ```
    pub fn balance(&self) -> usize {
        self.critical.lock().balance
    }

    /// Acquire a single permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder()
    ///     .initial(10)
    ///     .build();
    ///
    /// limiter.acquire_one().await;
    /// # }
    /// ```
    pub fn acquire_one(&self) -> Acquire<'_> {
        self.acquire(1)
    }

    /// Acquire the given number of permits, suspending the current task until
    /// they are available.
    ///
    /// If zero permits are specified, this function never suspends the current
    /// task.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder()
    ///     .initial(10)
    ///     .build();
    ///
    /// limiter.acquire(10).await;
    /// # }
    /// ```
    pub fn acquire(&self, permits: usize) -> Acquire<'_> {
        Acquire(AcquireFut::new(BorrowedRateLimiter(self), permits))
    }

    /// Acquire a permit using an owned future.
    ///
    /// If zero permits are specified, this function never suspends the current
    /// task.
    ///
    /// This required the [`RateLimiter`] to be wrapped inside of an
    /// [`std::sync::Arc`] but will in contrast permit the acquire operation to
    /// be owned by another struct making it more suitable for embedding.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::sync::Arc;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = Arc::new(RateLimiter::builder().initial(10).build());
    ///
    /// limiter.acquire_owned(10).await;
    /// # }
    /// ```
    ///
    /// Example when embedded into another future. This wouldn't be possible
    /// with [`RateLimiter::acquire`] since it would otherwise hold a reference
    /// to the corresponding [`RateLimiter`] instance.
    ///
    /// ```
    /// use leaky_bucket::{AcquireOwned, RateLimiter};
    /// use pin_project::pin_project;
    /// use std::future::Future;
    /// use std::pin::Pin;
    /// use std::sync::Arc;
    /// use std::task::{Context, Poll};
    /// use std::time::Duration;
    ///
    /// #[pin_project]
    /// struct MyFuture {
    ///     limiter: Arc<RateLimiter>,
    ///     #[pin]
    ///     acquire: Option<AcquireOwned>,
    /// }
    ///
    /// impl Future for MyFuture {
    ///     type Output = ();
    ///
    ///     fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
    ///         let mut this = self.project();
    ///
    ///         loop {
    ///             if let Some(acquire) = this.acquire.as_mut().as_pin_mut() {
    ///                 futures::ready!(acquire.poll(cx));
    ///                 return Poll::Ready(());
    ///             }
    ///
    ///             this.acquire.set(Some(this.limiter.clone().acquire_owned(100)));
    ///         }
    ///     }
    /// }
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = Arc::new(RateLimiter::builder().initial(100).build());
    ///
    /// let future = MyFuture { limiter, acquire: None };
    /// future.await;
    /// # }
    /// ```
    pub fn acquire_owned(self: Arc<Self>, permits: usize) -> AcquireOwned {
        AcquireOwned(AcquireFut::new(self, permits))
    }
}

// Safety: All the internals of acquire is thread safe and correctly
// synchronized. The embedded waiter queue doesn't have anything inherently
// unsafe in it.
unsafe impl Send for RateLimiter {}
unsafe impl Sync for RateLimiter {}

/// A builder for a [`RateLimiter`].
pub struct Builder {
    /// The max number of tokens.
    max: Option<usize>,
    /// The initial count of tokens.
    initial: usize,
    /// Tokens to add every `per` duration.
    refill: usize,
    /// Interval to add tokens in milliseconds.
    interval: time::Duration,
    /// If the rate limiter is fair or not.
    fair: bool,
}

impl Builder {
    /// Configure the max number of tokens to use.
    ///
    /// If unspecified, this will default to be 2 times the [`refill`] or the
    /// [`initial`] value, whichever is largest.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .max(10_000)
    ///     .build();
    /// ```
    ///
    /// [`refill`]: Builder::refill
    /// [`initial`]: Builder::initial
    pub fn max(&mut self, max: usize) -> &mut Self {
        self.max = Some(max);
        self
    }

    /// Configure the initial number of tokens to configure. The default value
    /// is `0`.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .initial(10)
    ///     .build();
    /// ```
    pub fn initial(&mut self, initial: usize) -> &mut Self {
        self.initial = initial;
        self
    }

    /// Configure the time duration between which we add [`refill`] number to
    /// the bucket rate limiter.
    ///
    /// # Panics
    ///
    /// This panics if the provided interval does not fit within the millisecond
    /// bounds of a [usize] or is zero.
    ///
    /// ```should_panic
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(time::Duration::from_secs(u64::MAX))
    ///     .build();
    /// ```
    ///
    /// ```should_panic
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(time::Duration::from_millis(0))
    ///     .build();
    /// ```
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(time::Duration::from_millis(100))
    ///     .build();
    /// ```
    ///
    /// [`refill`]: Builder::refill
    pub fn interval(&mut self, interval: time::Duration) -> &mut Self {
        assert! {
            interval.as_millis() != 0,
            "interval must be non-zero",
        };
        assert! {
            u64::try_from(interval.as_millis()).is_ok(),
            "interval must fit within a 64-bit integer"
        };
        self.interval = interval;
        self
    }

    /// The number of tokens to add at each [`interval`] interval. The default
    /// value is `1`.
    ///
    /// # Panics
    ///
    /// Panics if a refill amount of `0` is specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(100)
    ///     .build();
    /// ```
    ///
    /// [`interval`]: Builder::interval
    pub fn refill(&mut self, refill: usize) -> &mut Self {
        assert!(refill > 0, "refill amount cannot be zero");
        self.refill = refill;
        self
    }

    /// Configure the rate limiter to be fair. By default the rate limiter is
    /// *fair* which ensures that all tasks make steady progress even under
    /// contention. But an unfair scheduler might have a higher total
    /// throughput.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(100)
    ///     .fair(false)
    ///     .build();
    /// ```
    pub fn fair(&mut self, fair: bool) -> &mut Self {
        self.fair = fair;
        self
    }

    /// Construct a new [`RateLimiter`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(100)
    ///     .interval(time::Duration::from_millis(200))
    ///     .max(10_000)
    ///     .build();
    /// ```
    pub fn build(&self) -> RateLimiter {
        let deadline = time::Instant::now() + self.interval;

        let max = match self.max {
            Some(max) => max,
            None => usize::max(self.refill, self.initial).saturating_mul(DEFAULT_REFILL_MAX_FACTOR),
        };

        let initial = usize::min(self.initial, max);

        RateLimiter {
            refill: self.refill,
            interval: self.interval,
            max,
            fair: self.fair,
            critical: Mutex::new(Critical {
                balance: initial,
                waiters: LinkedList::new(),
                deadline,
                available: true,
            }),
        }
    }
}

/// Construct a new builder with default options.
///
/// # Examples
///
/// ```
/// use leaky_bucket::Builder;
///
/// let limiter = Builder::default().build();
/// ```
impl Default for Builder {
    fn default() -> Self {
        Self {
            max: None,
            initial: 0,
            refill: 1,
            interval: time::Duration::from_millis(100),
            fair: true,
        }
    }
}

/// The state of an acquire operation.
#[allow(clippy::large_enum_variant)]
enum State {
    /// Initial unconfigured state.
    Initial,
    /// The acquire is waiting to be released by the core.
    Waiting,
    /// This operation is currently the core.
    ///
    /// We need to take care to ensure that we don't move the configured sleep.
    /// Since it needs to be pinned to be polled.
    Core {
        /// The current sleep of the core.
        sleep: time::Sleep,
    },
    /// The operation is completed.
    Complete,
}

/// Internal state of the acquire. This is separated because it can be computed
/// in constant time.
struct AcquireState {
    /// If we are linked or not.
    linked: bool,
    /// Inner state of the acquire.
    linking: UnsafeCell<Linking>,
}

impl AcquireState {
    #[allow(clippy::declare_interior_mutable_const)]
    const INITIAL: AcquireState = AcquireState {
        linked: false,
        linking: UnsafeCell::new(Linking {
            task: Node::new(Task::new()),
            complete: AtomicBool::new(false),
            _pin: marker::PhantomPinned,
        }),
    };

    /// Access the completion flag.
    pub fn complete(&self) -> &AtomicBool {
        // Safety: This is always safe to access since it's atomic.
        unsafe {
            let ptr = self.linking.get() as *const _ as *const Node<Task>;
            let ptr = ptr.add(1) as *const AtomicBool;
            &*ptr
        }
    }

    /// Get the underlying task.
    pub unsafe fn task(&self) -> &Node<Task> {
        let ptr = self.linking.get() as *mut Node<Task>;
        &*ptr
    }

    /// Get the underlying task mutably.
    pub unsafe fn task_mut(&mut self) -> &mut Node<Task> {
        let ptr = self.linking.get() as *mut Node<Task>;
        &mut *ptr
    }

    /// Get the underlying task mutably and completion flag as a pair.
    pub unsafe fn update_project(&mut self) -> (&mut Node<Task>, &AtomicBool, &mut bool) {
        let node = self.linking.get() as *mut Node<Task>;
        let complete = node.add(1) as *const _ as *const AtomicBool;
        let node = &mut *(node as *mut Node<Task>);
        let complete = &*complete;
        (node, complete, &mut self.linked)
    }

    /// Update the waiting state for this acquisition task. This might require
    /// that we update the associated waker.
    #[tracing::instrument(skip(self, critical, waker), level = "trace")]
    fn update(&mut self, critical: &mut MutexGuard<'_, Critical>, waker: &Waker) {
        // Safety: we're ensured to do this under the critical lock since we've
        // passed the relevant guard in through `waiters`.
        let (task, complete, linked) = unsafe { self.update_project() };

        if !*linked {
            trace!("linking self");
            *linked = true;

            unsafe {
                critical.waiters.push_front(task.into());
            }
        }

        let w = &mut task.waker;

        let new_waker = match w {
            None => true,
            Some(w) => !w.will_wake(waker),
        };

        if new_waker {
            trace!("updating waker");
            *w = Some(waker.clone());
        }

        if task.complete.is_none() {
            trace!("setting complete");
            task.complete = Some(complete.into());
        }
    }

    /// Ensure that the current core task is correctly linked up if needed.
    #[tracing::instrument(skip(self, critical, lim), level = "trace")]
    unsafe fn link_core(&mut self, critical: &mut Critical, lim: &RateLimiter) {
        if lim.fair {
            // Fair scheduling needs to ensure that the core is part of the wait
            // queue, and will be woken up in-order with other tasks.
            if !mem::replace(&mut self.linked, true) {
                critical.waiters.push_front(self.task_mut().into());
            }
        } else {
            // Unfair scheduling the core task is not supposed to be in the wait
            // queue, so remove it from there if we've successfully stolen it.
            // Ensure that the current task is *not* linked since it is now to
            // become the coordinator for everyone else.
            if mem::take(&mut self.linked) {
                critical.waiters.remove(self.task_mut().into());
            }
        }
    }

    /// Release any remaining tokens which are associated with this particular task.
    unsafe fn release_remaining(
        &mut self,
        critical: &mut MutexGuard<'_, Critical>,
        permits: usize,
        lim: &RateLimiter,
    ) {
        if mem::take(&mut self.linked) {
            critical.waiters.remove(self.task_mut().into());
        }

        // Hand back permits which we've acquired so far.
        let release = permits.saturating_sub(self.linking.get_mut().task.remaining);

        // Temporarily assume the role of core and release the remaining
        // tokens to waiting tasks.
        if release > 0 {
            self.drain_wait_queue(critical, release, lim);
        }
    }

    /// Refill the wait queue with the given number of tokens.
    #[tracing::instrument(skip(self, critical, lim), level = "trace")]
    fn drain_wait_queue(
        &self,
        critical: &mut MutexGuard<'_, Critical>,
        tokens: usize,
        lim: &RateLimiter,
    ) {
        critical.balance = critical.balance.saturating_add(tokens);
        trace!(tokens = tokens, "draining tokens");

        let mut bump = 0;

        // Safety: we're holding the lock guard to all the waiters so we can be
        // sure that we have exclusive access to the wait queue.
        unsafe {
            while critical.balance > 0 {
                let mut node = match critical.waiters.pop_back() {
                    Some(node) => node,
                    None => break,
                };

                let n = node.as_mut();
                n.fill(&mut critical.balance);

                trace! {
                    balance = critical.balance,
                    remaining = n.remaining,
                    "filled node",
                };

                if !n.is_completed() {
                    critical.waiters.push_back(node);
                    break;
                }

                if let Some(complete) = n.complete.take() {
                    complete.as_ref().store(true, Ordering::Release);
                }

                if let Some(waker) = n.waker.take() {
                    waker.wake();
                }

                bump += 1;

                if bump == BUMP_LIMIT {
                    MutexGuard::bump(critical);
                    bump = 0;
                }
            }
        }

        if critical.balance > lim.max {
            critical.balance = lim.max;
        }
    }

    /// Drain the given number of tokens through the core. Returns `true` if the
    /// core has been completed.
    #[tracing::instrument(skip(self, critical, tokens, lim), level = "trace")]
    fn drain_core(
        &mut self,
        critical: &mut MutexGuard<'_, Critical>,
        tokens: usize,
        lim: &RateLimiter,
    ) -> bool {
        self.drain_wait_queue(critical, tokens, lim);

        if lim.fair {
            debug_assert! {
                self.linked,
                "core must be linked for fair scheduler",
            };

            // We only need to check the state since the current core holder is
            // linked up to the wait queue.
            //
            // Safety: we're doing this under the critical lock so we know we
            // have exclusive access to the node.
            if unsafe { self.task().is_completed() } {
                // Task was unlinked by the drain action.
                self.linked = false;
                return true;
            }

            false
        } else {
            debug_assert! {
                !self.linked,
                "core must not be linked for an unfair scheduler",
            };

            // If the limiter is not fair, we need to in addition to draining
            // remaining tokens from linked nodes, drain it from ourselves. We
            // fill the current holder of the core last (self). To ensure that
            // it stays around for as long as possible.
            //
            // Safety: we know that no one else holds the task at this point.
            // The in particular the task is not linked into the wait queue.
            let c = unsafe { &mut *self.task_mut() };
            c.fill(&mut critical.balance);
            c.is_completed()
        }
    }

    /// Assume the current core and calculate how long we must sleep for in
    /// order to do it.
    ///
    /// # Safety
    ///
    /// This might link the current task into the task queue, so the caller must
    /// ensure that it is pinned.
    #[tracing::instrument(skip(self, critical, lim), level = "trace")]
    unsafe fn assume_core(
        &mut self,
        critical: &mut MutexGuard<'_, Critical>,
        lim: &RateLimiter,
    ) -> bool {
        self.link_core(critical, lim);

        let (tokens, deadline) = match calculate_drain(critical.deadline, lim.interval) {
            Some(tokens) => tokens,
            None => return true,
        };

        // It is appropriate to update the deadline.
        critical.deadline = deadline;

        if self.drain_core(critical, tokens, lim) {
            // We synthetically "ran" at the current time minus the remaining time
            // we need to wait until the last update period.
            critical.release();
            return false;
        }

        true
    }
}

impl fmt::Debug for AcquireState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AcquireState").finish()
    }
}

/// The future associated with acquiring permits from a rate limiter using
/// [`RateLimiter::acquire`].
pub struct Acquire<'a>(AcquireFut<BorrowedRateLimiter<'a>>);

impl Acquire<'_> {
    /// Test if this acquire task is currently coordinating the rate limiter.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::future::Future;
    /// use std::sync::Arc;
    /// use std::task::Context;
    ///
    /// struct Waker;
    /// # impl std::task::Wake for Waker { fn wake(self: Arc<Self>) { } }
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder().build();
    ///
    /// let waker = Arc::new(Waker).into();
    /// let mut cx = Context::from_waker(&waker);
    ///
    /// let a1 = limiter.acquire(1);
    /// tokio::pin!(a1);
    ///
    /// assert!(!a1.is_core());
    /// assert!(a1.as_mut().poll(&mut cx).is_pending());
    /// assert!(a1.is_core());
    ///
    /// a1.as_mut().await;
    ///
    /// // After completion this is no longer a core.
    /// assert!(!a1.is_core());
    /// # }
    /// ```
    pub fn is_core(&self) -> bool {
        self.0.is_core()
    }
}

impl Future for Acquire<'_> {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let inner = unsafe { Pin::map_unchecked_mut(self, |this| &mut this.0) };
        inner.poll(cx)
    }
}

/// The future associated with acquiring permits from a rate limiter using
/// [`RateLimiter::acquire_owned`].
pub struct AcquireOwned(AcquireFut<Arc<RateLimiter>>);

impl AcquireOwned {
    /// Test if this acquire task is currently coordinating the rate limiter.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::future::Future;
    /// use std::sync::Arc;
    /// use std::task::Context;
    ///
    /// struct Waker;
    /// # impl std::task::Wake for Waker { fn wake(self: Arc<Self>) { } }
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = Arc::new(RateLimiter::builder().build());
    ///
    /// let waker = Arc::new(Waker).into();
    /// let mut cx = Context::from_waker(&waker);
    ///
    /// let a1 = limiter.acquire_owned(1);
    /// tokio::pin!(a1);
    ///
    /// assert!(!a1.is_core());
    /// assert!(a1.as_mut().poll(&mut cx).is_pending());
    /// assert!(a1.is_core());
    ///
    /// a1.as_mut().await;
    ///
    /// // After completion this is no longer a core.
    /// assert!(!a1.is_core());
    /// # }
    /// ```
    pub fn is_core(&self) -> bool {
        self.0.is_core()
    }
}

impl Future for AcquireOwned {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let inner = unsafe { Pin::map_unchecked_mut(self, |this| &mut this.0) };
        inner.poll(cx)
    }
}

struct AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    /// Inner shared state.
    lim: T,
    /// The number of permits associated with this future.
    permits: usize,
    /// State of the acquisition.
    state: State,
    /// The internal acquire state.
    internal: AcquireState,
}

impl<T> AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    #[inline]
    fn new(lim: T, permits: usize) -> Self {
        Self {
            lim,
            permits,
            state: State::Initial,
            internal: AcquireState::INITIAL,
        }
    }

    fn is_core(&self) -> bool {
        matches!(&self.state, State::Core { .. })
    }
}

// Safety: All the internals of acquire is thread safe and correctly
// synchronized. The embedded waiter queue doesn't have anything inherently
// unsafe in it.
unsafe impl<T> Send for AcquireFut<T> where T: AsRef<RateLimiter> {}
unsafe impl<T> Sync for AcquireFut<T> where T: AsRef<RateLimiter> {}

impl<T> Future for AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = unsafe { self.get_unchecked_mut() };
        let lim = this.lim.as_ref();

        loop {
            match &mut this.state {
                State::Initial => {
                    // Safety: The task is not linked up yet, so we can safely
                    // inspect the number of permits without having to
                    // synchronize.
                    if this.permits == 0 {
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    let mut critical = lim.critical.lock();

                    // If we've hit a deadline, calculate the number of tokens
                    // to drain and perform it in line here. This is necessary
                    // because the core isn't aware of how long we sleep between
                    // each acquire, so we need to perform some of the drain
                    // work here in order to avoid acruing a debt that needs to
                    // be filled later in.
                    //
                    // If we didn't do this, and the process slept for a long
                    // time, the next time a core is acquired it would be very
                    // far removed from the expected deadline and has no idea
                    // when permits were acquired, so it would over-eagerly
                    // release a lot of acquires and accumulate permits.
                    //
                    // This is tested for in the `test_idle` suite of tests.
                    if let Some((tokens, deadline)) =
                        calculate_drain(critical.deadline, lim.interval)
                    {
                        trace!(tokens = tokens, "inline drain");
                        // We pre-emptively update the deadline of the core
                        // since it might bump, and we don't want other
                        // processes to observe that the deadline has been
                        // reached.
                        critical.deadline = deadline;
                        this.internal.drain_wait_queue(&mut critical, tokens, lim);
                    }

                    // Test the fast path first, where we simply subtract the
                    // permits available from the current balance.
                    if let Some(balance) = critical.balance.checked_sub(this.permits) {
                        critical.balance = balance;
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    let balance = mem::take(&mut critical.balance);

                    // Safety: This is done in a pinned section, so we know that
                    // the linked section stays alive for the duration of this
                    // future due to pinning guarantees.
                    unsafe {
                        this.internal.task_mut().remaining = this.permits - balance;
                    }

                    // Try to take over as core. If we're unsuccessful we just
                    // ensure that we're linked into the wait queue.
                    if !mem::take(&mut critical.available) {
                        this.internal.update(&mut critical, cx.waker());
                        this.state = State::Waiting;
                        return Poll::Pending;
                    }

                    // Safety: This is done in a pinned section, so we know that
                    // the linked section stays alive for the duration of this
                    // future due to pinning guarantees.
                    unsafe { this.internal.link_core(&mut critical, lim) };

                    trace!(until = ?critical.deadline, "taking over core and sleeping");
                    this.state = State::Core {
                        sleep: time::sleep_until(critical.deadline),
                    };

                    trace!("no immediate tokens available");
                }
                State::Waiting => {
                    // If we are complete, then return as ready.
                    //
                    // This field is atomic, so we can safely read it under shared
                    // access and do not require a lock.
                    if this.internal.complete().load(Ordering::Acquire) {
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    // Note: we need to operate under this lock to ensure that
                    // the core acquired here (or elsewhere) observes that the
                    // current task has been linked up.
                    let mut critical = lim.critical.lock();

                    // Try to take over as core. If we're unsuccessful we
                    // just ensure that we're linked into the wait queue.
                    if !mem::take(&mut critical.available) {
                        this.internal.update(&mut critical, cx.waker());
                        return Poll::Pending;
                    }

                    // Safety: This is done in a pinned section, so we know that
                    // the linked section stays alive for the duration of this
                    // future due to pinning guarantees.
                    let assumed = unsafe { this.internal.assume_core(&mut critical, lim) };

                    if !assumed {
                        // Marks as completed.
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    trace!(until = ?critical.deadline, "taking over core and sleeping");
                    this.state = State::Core {
                        sleep: time::sleep_until(critical.deadline),
                    };
                }
                State::Core { sleep } => {
                    let mut sleep = unsafe { Pin::new_unchecked(sleep) };

                    if sleep.as_mut().poll(cx).is_pending() {
                        return Poll::Pending;
                    }

                    let now = time::Instant::now();
                    trace!(now = ?now, "sleep completed");
                    let mut critical = lim.critical.lock();
                    critical.deadline = now + lim.interval;

                    // Safety: we know that we're the only one with access to core
                    // because we ensured it as we acquire the `available` lock.
                    if this.internal.drain_core(&mut critical, lim.refill, lim) {
                        critical.release();
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    trace!(sleep = ?lim.interval, "keeping core and sleeping");
                    sleep.as_mut().reset(critical.deadline);
                }
                State::Complete => {
                    panic!("polled after completion");
                }
            }
        }
    }
}

impl<T> Drop for AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    fn drop(&mut self) {
        let lim = self.lim.as_ref();

        match &mut self.state {
            State::Waiting => unsafe {
                debug_assert! {
                    self.internal.linked,
                    "waiting nodes have to be linked",
                };

                // While the node is linked into the wait queue we have to
                // ensure it's only accessed under a lock, but once it's been
                // unlinked we can do what we want with it.
                let mut critical = lim.critical.lock();
                self.internal
                    .release_remaining(&mut critical, self.permits, lim);
            },
            State::Core { .. } => unsafe {
                let mut critical = lim.critical.lock();
                self.internal
                    .release_remaining(&mut critical, self.permits, lim);
                critical.release();
            },
            _ => (),
        }
    }
}

/// All of the state that is linked into the wait queue.
///
/// This is only ever accessed through raw pointer manipulation to avoid issues
/// with field aliasing.
#[repr(C)]
struct Linking {
    /// The node in the linked list.
    task: Node<Task>,
    /// If this node has been released or not. We make this an atomic to permit
    /// access to it without synchronization.
    complete: AtomicBool,
    /// Avoids noalias heuristics from kicking in on references to a `Linking`
    /// struct.
    _pin: marker::PhantomPinned,
}

/// Calculate refill amount. Returning a tuple of how much to fill and remaining
/// duration to sleep until the next refill time if appropriate.
fn calculate_drain(
    deadline: time::Instant,
    interval: time::Duration,
) -> Option<(usize, time::Instant)> {
    let now = time::Instant::now();

    if now < deadline {
        return None;
    }

    // Time elapsed in milliseconds since the last deadline.
    let millis = interval.as_millis();
    let since = now.saturating_duration_since(deadline).as_millis();

    let tokens = usize::try_from(since / millis + 1).unwrap_or(usize::MAX);
    let rem = u64::try_from(since % millis).unwrap_or(u64::MAX);

    // Calculated time remaining until the next deadline.
    let deadline = now + (interval - time::Duration::from_millis(rem));
    Some((tokens, deadline))
}

#[cfg(test)]
mod tests {
    use super::{Acquire, AcquireOwned, RateLimiter};

    fn is_send<T: Send>() {}
    fn is_sync<T: Sync>() {}

    #[test]
    fn assert_send_sync() {
        is_send::<AcquireOwned>();
        is_sync::<AcquireOwned>();

        is_send::<RateLimiter>();
        is_sync::<RateLimiter>();

        is_send::<Acquire<'_>>();
        is_sync::<Acquire<'_>>();
    }
}