1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
//! [<img alt="github" src="https://img.shields.io/badge/github-udoprog/leaky-bucket?style=for-the-badge&logo=github" height="20">](https://github.com/udoprog/leaky-bucket)
//! [<img alt="crates.io" src="https://img.shields.io/crates/v/leaky-bucket.svg?style=for-the-badge&color=fc8d62&logo=rust" height="20">](https://crates.io/crates/leaky-bucket)
//! [<img alt="docs.rs" src="https://img.shields.io/badge/docs.rs-leaky-bucket?style=for-the-badge&logoColor=white&logo=" height="20">](https://docs.rs/leaky-bucket)
//! [<img alt="build status" src="https://img.shields.io/github/workflow/status/udoprog/leaky-bucket/CI/main?style=for-the-badge" height="20">](https://github.com/udoprog/leaky-bucket/actions?query=branch%3Amain)
//!
//! A token-based rate limiter based on the [leaky bucket] algorithm.
//!
//! If the bucket overflows and goes over its max configured capacity, the task
//! that tried to acquire the tokens will be suspended until the required number
//! of tokens has been drained from the bucket.
//!
//! Since this crate uses timing facilities from tokio it has to be used within
//! a Tokio runtime with the [`time` feature] enabled.
//!
//! <br>
//!
//! ## Usage
//!
//! Add the following to your `Cargo.toml`:
//!
//! ```toml
//! leaky-bucket = "0.11.1"
//! ```
//!
//! <br>
//!
//! ## Examples
//!
//! The core type is the [`RateLimiter`] type, which allows for limiting the
//! throughput of a section using its [`acquire`] and [`acquire_one`] methods.
//!
//! ```
//! use leaky_bucket::RateLimiter;
//! use std::time;
//!
//! #[tokio::main]
//! async fn main() {
//!     let limiter = RateLimiter::builder()
//!         .max(10)
//!         .initial(0)
//!         .refill(5)
//!         .build();
//!
//!     let start = time::Instant::now();
//!
//!     println!("Waiting for permit...");
//!
//!     // Should take about 5 seconds to acquire in total.
//!     let a = limiter.acquire(7);
//!     let b = limiter.acquire(3);
//!     let c = limiter.acquire(10);
//!
//!     let ((), (), ()) = tokio::join!(a, b, c);
//!
//!     println!(
//!         "I made it in {:?}!",
//!         time::Instant::now().duration_since(start)
//!     );
//! }
//! ```
//!
//! <br>
//!
//! ## Implementation details
//!
//! Each rate limiter has two acquisition modes. A fast path and a slow path.
//! The fast path is used if the desired number of tokens are readily available,
//! and involves incrementing an atomic counter indicating that the acquired
//! number of tokens have been added to the bucket.
//!
//! If this counter goes over its configured maximum capacity, it overflows into
//! a slow path. Here one of the acquiring tasks will switch over to work as a
//! *core*. This is known as *core switching*.
//!
//! ```
//! use leaky_bucket::RateLimiter;
//! use std::time;
//!
//! # #[tokio::main] async fn main() {
//! let limiter = RateLimiter::builder()
//!     .initial(10)
//!     .interval(time::Duration::from_millis(100))
//!     .build();
//!
//! // This is instantaneous since the rate limiter starts with 10 tokens to
//! // spare.
//! limiter.acquire(10).await;
//!
//! // This however needs to core switch and wait for a while until the desired
//! // number of tokens is available.
//! limiter.acquire(3).await;
//! # }
//! ```
//!
//! The core is responsible for sleeping for the configured interval so that
//! more tokens can be added. After which it ensures that any tasks that are
//! waiting to acquire including itself are appropriately unsuspended.
//!
//! On-demand core switching is what allows this rate limiter implementation to
//! work without a coordinating background thread. But we need to ensure that
//! any asynchronous tasks that uses [`RateLimiter`] must either run an
//! [`acquire`] call to completion, or be *cancelled* by being dropped.
//!
//! If none of these hold, the core might leak and be locked indefinitely
//! preventing any future use of the rate limiter from making progress. This is
//! similar to if you would lock an asynchronous [`Mutex`] but never drop its
//! guard.
//!
//! > You can run this example with:
//! >
//! > ```sh
//! > cargo run --example block-forever
//! > ```
//!
//! ```
//! use leaky_bucket::RateLimiter;
//! use std::future::Future;
//! use std::sync::Arc;
//! use std::task::Context;
//!
//! struct Waker;
//! # impl std::task::Wake for Waker { fn wake(self: Arc<Self>) { } }
//!
//! # #[tokio::main] async fn main() {
//! let limiter = Arc::new(RateLimiter::builder().build());
//!
//! let waker = Arc::new(Waker).into();
//! let mut cx = Context::from_waker(&waker);
//!
//! let mut a0 = Box::pin(limiter.acquire(1));
//! // Poll once to ensure that the core task is assigned.
//! assert!(a0.as_mut().poll(&mut cx).is_pending());
//! assert!(a0.is_core());
//!
//! // We leak the core task, preventing the rate limiter from making progress
//! // by assigning new core tasks.
//! std::mem::forget(a0);
//!
//! // Awaiting acquire here would block forever.
//! // limiter.acquire(1).await;
//! # }
//! ```
//!
//! <br>
//!
//! ## Fairness
//!
//! By default [`RateLimiter`] uses a *fair* scheduler. This ensures that the
//! core task makes progress even if there are many tasks waiting to acquire
//! tokens. As a result it causes more frequent core switching, increasing the
//! total work needed. An unfair scheduler is expected to do a bit less work
//! under contention. But without fair scheduling some tasks might end up taking
//! longer to acquire than expected.
//!
//! This behavior can be tweaked with the [`Builder::fair`] option.
//!
//! ```
//! use leaky_bucket::RateLimiter;
//!
//! let limiter = RateLimiter::builder()
//!     .fair(false)
//!     .build();
//! ```
//!
//! The `unfair-scheduling` example can showcase this phenomenon.
//!
//! ```sh
//! cargh run --example unfair-scheduling
//! ```
//!
//! ```text
//! # fair
//! Max: 1011ms, Total: 1012ms
//! Timings:
//!  0: 101ms
//!  1: 101ms
//!  2: 101ms
//!  3: 101ms
//!  4: 101ms
//!  ...
//! # unfair
//! Max: 1014ms, Total: 1014ms
//! Timings:
//!  0: 1014ms
//!  1: 101ms
//!  2: 101ms
//!  3: 101ms
//!  4: 101ms
//!  ...
//! ```
//!
//! As can be seen above the first task in the *unfair* scheduler takes longer
//! to run because it prioritises releasing other tasks waiting to acquire over
//! itself.
//!
//! [`acquire_one`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.RateLimiter.html#method.acquire_one
//! [`acquire`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.RateLimiter.html#method.acquire
//! [`Builder::fair`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.Builder.html#method.fair
//! [`Mutex`]: https://docs.rs/tokio/1/tokio/sync/struct.Mutex.html
//! [`RateLimiter`]: https://docs.rs/leaky-bucket/0/leaky_bucket/struct.RateLimiter.html
//! [`time` feature]: https://docs.rs/tokio/1/tokio/#feature-flags
//! [leaky bucket]: https://en.wikipedia.org/wiki/Leaky_bucket

#![deny(missing_docs, missing_doc_code_examples)]

use parking_lot::{Mutex, MutexGuard};
use std::cell::UnsafeCell;
use std::convert::TryFrom as _;
use std::fmt;
use std::future::Future;
use std::marker;
use std::mem;
use std::pin::Pin;
use std::ptr;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll, Waker};
use tokio::time;
use tracing::trace;

#[doc(hidden)]
pub mod linked_list;
use self::linked_list::{LinkedList, Node};

/// Default factor for how to calculate max refill value.
const DEFAULT_REFILL_MAX_FACTOR: usize = 10;

/// Interval to bump the shared mutex guard to allow other parts of the system
/// to make process. Processes which loop should use this number to determine
/// how many times it should loop before calling [MutexGuard::bump].
///
/// If we do not respect this limit we might inadvertently end up starving other
/// tasks from making progress so that they can unblock.
const BUMP_LIMIT: usize = 16;

/// Linked task state.
struct Task {
    /// Remaining tokens that need to be satisfied.
    remaining: usize,
    /// Link to [Linking::complete].
    complete: Option<ptr::NonNull<AtomicBool>>,
    /// The waker associated with the node.
    waker: Option<Waker>,
}

impl Task {
    /// Construct a new task state with the given permits remaining.
    const fn new() -> Self {
        Self {
            remaining: 0,
            complete: None,
            waker: None,
        }
    }

    /// Test if the current node is completed.
    fn is_completed(&self) -> bool {
        self.remaining == 0
    }

    /// Fill the current node from the given pool of tokens and modify it.
    fn fill(&mut self, current: &mut usize) {
        let removed = usize::min(self.remaining, *current);
        self.remaining -= removed;
        *current -= removed;
    }
}

/// A borrowed rate limiter.
struct BorrowedRateLimiter<'a>(&'a RateLimiter);

impl AsRef<RateLimiter> for BorrowedRateLimiter<'_> {
    fn as_ref(&self) -> &RateLimiter {
        self.0
    }
}

struct Critical {
    /// Current balance of tokens. A value of 0 means that it is empty. Goes up
    /// to [`RateLimiter::max`].
    balance: usize,
    /// Waiter list.
    waiters: LinkedList<Task>,
    /// The deadline for when more tokens can be be added.
    deadline: time::Instant,
    /// If the core is available.
    available: bool,
}

impl Critical {
    /// Release the current core. Beyond this point the current task may no
    /// longer interact exclusively with the core.
    #[tracing::instrument(skip(self), level = "trace")]
    fn release(&mut self) {
        trace!("releasing core");
        self.available = true;

        // Find another task that might take over as core. Once it has acquired
        // core status it will have to make sure it is no longer linked into the
        // wait queue.
        //
        // We have to do this, because another task might miss that the core is
        // available since it's hidden behind an atomic, so we wake any task up
        // to ensure that it will always be picked up.
        //
        // Safety: We're holding the lock guard to all the waiters so we can be
        // certain that we have exclusive access.
        unsafe {
            if let Some(mut node) = self.waiters.front_mut() {
                trace!(node = ?node, "waking next core");

                if let Some(waker) = node.as_mut().waker.take() {
                    waker.wake();
                }
            }
        }
    }
}

/// A token-bucket rate limiter.
pub struct RateLimiter {
    /// Tokens to add every `per` duration.
    refill: usize,
    /// Interval in milliseconds to add tokens.
    interval: time::Duration,
    /// Max number of tokens associated with the rate limiter.
    max: usize,
    /// If the rate limiter is fair or not.
    fair: bool,
    /// Critical state of the rate limiter.
    critical: Mutex<Critical>,
}

impl RateLimiter {
    /// Construct a new [`Builder`] for a [`RateLimiter`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time::Duration;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .initial(100)
    ///     .refill(100)
    ///     .max(1000)
    ///     .interval(Duration::from_millis(250))
    ///     .fair(false)
    ///     .build();
    /// ```
    pub fn builder() -> Builder {
        Builder::default()
    }

    /// Get the current token balance.
    ///
    /// This indicates how many tokens can be requested without blocking.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder()
    ///     .initial(100)
    ///     .build();
    ///
    /// assert_eq!(limiter.balance(), 100);
    /// limiter.acquire(10).await;
    /// assert_eq!(limiter.balance(), 90);
    /// # }
    /// ```
    pub fn balance(&self) -> usize {
        self.critical.lock().balance
    }

    /// Acquire a single permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder()
    ///     .initial(10)
    ///     .build();
    ///
    /// limiter.acquire_one().await;
    /// # }
    /// ```
    pub fn acquire_one(&self) -> Acquire<'_> {
        self.acquire(1)
    }

    /// Acquire the given number of permits, suspending the current task until
    /// they are available.
    ///
    /// If zero permits are specified, this function never suspends the current
    /// task.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder()
    ///     .initial(10)
    ///     .build();
    ///
    /// limiter.acquire(10).await;
    /// # }
    /// ```
    pub fn acquire(&self, permits: usize) -> Acquire<'_> {
        Acquire(AcquireFut::new(BorrowedRateLimiter(self), permits))
    }

    /// Acquire a permit using an owned future.
    ///
    /// If zero permits are specified, this function never suspends the current
    /// task.
    ///
    /// This required the [`RateLimiter`] to be wrapped inside of an
    /// [`std::sync::Arc`] but will in contrast permit the acquire operation to
    /// be owned by another struct making it more suitable for embedding.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::sync::Arc;
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = Arc::new(RateLimiter::builder().initial(10).build());
    ///
    /// limiter.acquire_owned(10).await;
    /// # }
    /// ```
    ///
    /// Example when embedded into another future. This wouldn't be possible
    /// with [`RateLimiter::acquire`] since it would otherwise hold a reference
    /// to the corresponding [`RateLimiter`] instance.
    ///
    /// ```
    /// use leaky_bucket::{AcquireOwned, RateLimiter};
    /// use pin_project::pin_project;
    /// use std::future::Future;
    /// use std::pin::Pin;
    /// use std::sync::Arc;
    /// use std::task::{Context, Poll};
    /// use std::time::Duration;
    ///
    /// #[pin_project]
    /// struct MyFuture {
    ///     limiter: Arc<RateLimiter>,
    ///     #[pin]
    ///     acquire: Option<AcquireOwned>,
    /// }
    ///
    /// impl Future for MyFuture {
    ///     type Output = ();
    ///
    ///     fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
    ///         let mut this = self.project();
    ///
    ///         loop {
    ///             if let Some(acquire) = this.acquire.as_mut().as_pin_mut() {
    ///                 futures::ready!(acquire.poll(cx));
    ///                 return Poll::Ready(());
    ///             }
    ///
    ///             this.acquire.set(Some(this.limiter.clone().acquire_owned(100)));
    ///         }
    ///     }
    /// }
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = Arc::new(RateLimiter::builder().initial(100).build());
    ///
    /// let future = MyFuture { limiter, acquire: None };
    /// future.await;
    /// # }
    /// ```
    pub fn acquire_owned(self: Arc<Self>, permits: usize) -> AcquireOwned {
        AcquireOwned(AcquireFut::new(self, permits))
    }
}

// Safety: All the internals of acquire is thread safe and correctly
// synchronized. The embedded waiter queue doesn't have anything inherently
// unsafe in it.
unsafe impl Send for RateLimiter {}
unsafe impl Sync for RateLimiter {}

/// A builder for a [`RateLimiter`].
pub struct Builder {
    /// The max number of tokens.
    max: Option<usize>,
    /// The initial count of tokens.
    initial: usize,
    /// Tokens to add every `per` duration.
    refill: usize,
    /// Interval to add tokens in milliseconds.
    interval: time::Duration,
    /// If the rate limiter is fair or not.
    fair: bool,
}

impl Builder {
    /// Configure the max number of tokens to use.
    ///
    /// If unspecified, this will default to be 2 times the [`refill`] or the
    /// [`initial`] value, whichever is largest.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .max(10_000)
    ///     .build();
    /// ```
    ///
    /// [`refill`]: Builder::refill
    /// [`initial`]: Builder::initial
    pub fn max(&mut self, max: usize) -> &mut Self {
        self.max = Some(max);
        self
    }

    /// Configure the initial number of tokens to configure. The default value
    /// is `0`.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .initial(10)
    ///     .build();
    /// ```
    pub fn initial(&mut self, initial: usize) -> &mut Self {
        self.initial = initial;
        self
    }

    /// Configure the time duration between which we add [`refill`] number to
    /// the bucket rate limiter.
    ///
    /// # Panics
    ///
    /// This panics if the provided interval does not fit within the millisecond
    /// bounds of a [usize] or is zero.
    ///
    /// ```should_panic
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(time::Duration::from_secs(u64::MAX))
    ///     .build();
    /// ```
    ///
    /// ```should_panic
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(time::Duration::from_millis(0))
    ///     .build();
    /// ```
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .interval(time::Duration::from_millis(100))
    ///     .build();
    /// ```
    ///
    /// [`refill`]: Builder::refill
    pub fn interval(&mut self, interval: time::Duration) -> &mut Self {
        assert! {
            interval.as_millis() != 0,
            "interval must be non-zero",
        };
        assert! {
            u64::try_from(interval.as_millis()).is_ok(),
            "interval must fit within a 64-bit integer"
        };
        self.interval = interval;
        self
    }

    /// The number of tokens to add at each [`interval`] interval. The default
    /// value is `1`.
    ///
    /// # Panics
    ///
    /// Panics if a refill amount of `0` is specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(100)
    ///     .build();
    /// ```
    ///
    /// [`interval`]: Builder::interval
    pub fn refill(&mut self, refill: usize) -> &mut Self {
        assert!(refill > 0, "refill amount cannot be zero");
        self.refill = refill;
        self
    }

    /// Configure the rate limiter to be fair. By default the rate limiter is
    /// *fair* which ensures that all tasks make steady progress even under
    /// contention. But an unfair scheduler might have a higher total
    /// throughput.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(100)
    ///     .fair(false)
    ///     .build();
    /// ```
    pub fn fair(&mut self, fair: bool) -> &mut Self {
        self.fair = fair;
        self
    }

    /// Construct a new [`RateLimiter`].
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::time;
    ///
    /// let limiter = RateLimiter::builder()
    ///     .refill(100)
    ///     .interval(time::Duration::from_millis(200))
    ///     .max(10_000)
    ///     .build();
    /// ```
    pub fn build(&self) -> RateLimiter {
        let deadline = time::Instant::now() + self.interval;

        let max = match self.max {
            Some(max) => max,
            None => usize::max(self.refill, self.initial).saturating_mul(DEFAULT_REFILL_MAX_FACTOR),
        };

        let initial = usize::min(self.initial, max);

        RateLimiter {
            refill: self.refill,
            interval: self.interval,
            max,
            fair: self.fair,
            critical: Mutex::new(Critical {
                balance: initial,
                waiters: LinkedList::new(),
                deadline,
                available: true,
            }),
        }
    }
}

/// Construct a new builder with default options.
///
/// # Examples
///
/// ```
/// use leaky_bucket::Builder;
///
/// let limiter = Builder::default().build();
/// ```
impl Default for Builder {
    fn default() -> Self {
        Self {
            max: None,
            initial: 0,
            refill: 1,
            interval: time::Duration::from_millis(100),
            fair: true,
        }
    }
}

/// The state of an acquire operation.
#[allow(clippy::large_enum_variant)]
enum State {
    /// Initial unconfigured state.
    Initial,
    /// The acquire is waiting to be released by the core.
    Waiting,
    /// This operation is currently the core.
    ///
    /// We need to take care to ensure that we don't move the configured sleep.
    /// Since it needs to be pinned to be polled.
    Core {
        /// The current sleep of the core.
        sleep: time::Sleep,
    },
    /// The operation is completed.
    Complete,
}

/// Internal state of the acquire. This is separated because it can be computed
/// in constant time.
struct AcquireState {
    /// If we are linked or not.
    linked: bool,
    /// Inner state of the acquire.
    linking: UnsafeCell<Linking>,
}

impl AcquireState {
    #[allow(clippy::declare_interior_mutable_const)]
    const INITIAL: AcquireState = AcquireState {
        linked: false,
        linking: UnsafeCell::new(Linking {
            task: Node::new(Task::new()),
            complete: AtomicBool::new(false),
            _pin: marker::PhantomPinned,
        }),
    };

    /// Access the completion flag.
    pub fn complete(&self) -> &AtomicBool {
        // Safety: This is always safe to access since it's atomic.
        unsafe {
            let ptr = self.linking.get() as *const _ as *const Node<Task>;
            let ptr = ptr.add(1) as *const AtomicBool;
            &*ptr
        }
    }

    /// Get the underlying task.
    pub unsafe fn task(&self) -> &Node<Task> {
        let ptr = self.linking.get() as *mut Node<Task>;
        &*ptr
    }

    /// Get the underlying task mutably.
    pub unsafe fn task_mut(&mut self) -> &mut Node<Task> {
        let ptr = self.linking.get() as *mut Node<Task>;
        &mut *ptr
    }

    /// Get the underlying task mutably and completion flag as a pair.
    pub unsafe fn update_project(&mut self) -> (&mut Node<Task>, &AtomicBool, &mut bool) {
        let node = self.linking.get() as *mut Node<Task>;
        let complete = node.add(1) as *const _ as *const AtomicBool;
        let node = &mut *(node as *mut Node<Task>);
        let complete = &*complete;
        (node, complete, &mut self.linked)
    }

    /// Update the waiting state for this acquisition task. This might require
    /// that we update the associated waker.
    #[tracing::instrument(skip(self, critical, waker), level = "trace")]
    fn update(&mut self, critical: &mut MutexGuard<'_, Critical>, waker: &Waker) {
        // Safety: we're ensured to do this under the critical lock since we've
        // passed the relevant guard in through `waiters`.
        let (task, complete, linked) = unsafe { self.update_project() };

        if !*linked {
            trace!("linking self");
            *linked = true;

            unsafe {
                critical.waiters.push_front(task.into());
            }
        }

        let w = &mut task.waker;

        let new_waker = match w {
            None => true,
            Some(w) => !w.will_wake(waker),
        };

        if new_waker {
            trace!("updating waker");
            *w = Some(waker.clone());
        }

        if task.complete.is_none() {
            trace!("setting complete");
            task.complete = Some(complete.into());
        }
    }

    /// Ensure that the current core task is correctly linked up if needed.
    #[tracing::instrument(skip(self, critical, lim), level = "trace")]
    unsafe fn link_core(&mut self, critical: &mut Critical, lim: &RateLimiter) {
        if lim.fair {
            // Fair scheduling needs to ensure that the core is part of the wait
            // queue, and will be woken up in-order with other tasks.
            if !mem::replace(&mut self.linked, true) {
                critical.waiters.push_front(self.task_mut().into());
            }
        } else {
            // Unfair scheduling the core task is not supposed to be in the wait
            // queue, so remove it from there if we've successfully stolen it.
            // Ensure that the current task is *not* linked since it is now to
            // become the coordinator for everyone else.
            if mem::take(&mut self.linked) {
                critical.waiters.remove(self.task_mut().into());
            }
        }
    }

    /// Refill the wait queue with the given number of tokens.
    #[tracing::instrument(skip(self, critical, lim), level = "trace")]
    fn drain_wait_queue(
        &self,
        critical: &mut MutexGuard<'_, Critical>,
        tokens: usize,
        lim: &RateLimiter,
    ) {
        critical.balance = usize::min(critical.balance.saturating_add(tokens), lim.max);
        trace!(tokens = tokens, "draining tokens");

        let mut bump = 0;

        // Safety: we're holding the lock guard to all the waiters so we can be
        // sure that we have exclusive access to the wait queue.
        unsafe {
            while critical.balance > 0 {
                let mut node = match critical.waiters.pop_back() {
                    Some(node) => node,
                    None => break,
                };

                let n = node.as_mut();
                n.fill(&mut critical.balance);

                trace! {
                    balance = critical.balance,
                    remaining = n.remaining,
                    "filled node",
                };

                if !n.is_completed() {
                    critical.waiters.push_back(node);
                    break;
                }

                if let Some(complete) = n.complete.take() {
                    complete.as_ref().store(true, Ordering::Release);
                }

                if let Some(waker) = n.waker.take() {
                    waker.wake();
                }

                bump += 1;

                if bump == BUMP_LIMIT {
                    MutexGuard::bump(critical);
                    bump = 0;
                }
            }
        }
    }

    /// Drain the given number of tokens through the core. Returns `true` if the
    /// core has been completed.
    #[tracing::instrument(skip(self, critical, tokens, lim), level = "trace")]
    fn drain_core(
        &mut self,
        critical: &mut MutexGuard<'_, Critical>,
        tokens: usize,
        lim: &RateLimiter,
    ) -> bool {
        self.drain_wait_queue(critical, tokens, lim);

        if lim.fair {
            debug_assert! {
                self.linked,
                "core must be linked for fair scheduler",
            };

            // We only need to check the state since the current core holder is
            // linked up to the wait queue.
            //
            // Safety: we're doing this under the critical lock so we know we
            // have exclusive access to the node.
            if unsafe { self.task().is_completed() } {
                // Task was unlinked by the drain action.
                self.linked = false;
                return true;
            }

            false
        } else {
            debug_assert! {
                !self.linked,
                "core must not be linked for an unfair scheduler",
            };

            // If the limiter is not fair, we need to in addition to draining
            // remaining tokens from linked nodes, drain it from ourselves. We
            // fill the current holder of the core last (self). To ensure that
            // it stays around for as long as possible.
            //
            // Safety: we know that no one else holds the task at this point.
            // The in particular the task is not linked into the wait queue.
            let c = unsafe { &mut *self.task_mut() };
            c.fill(&mut critical.balance);
            c.is_completed()
        }
    }

    /// Assume the current core and calculate how long we must sleep for in
    /// order to do it.
    ///
    /// # Safety
    ///
    /// This might link the current task into the task queue, so the caller must
    /// ensure that it is pinned.
    #[tracing::instrument(skip(self, critical, lim), level = "trace")]
    unsafe fn assume_core(
        &mut self,
        critical: &mut MutexGuard<'_, Critical>,
        lim: &RateLimiter,
    ) -> bool {
        self.link_core(critical, lim);

        let (tokens, deadline) = match calculate_drain(critical.deadline, lim.interval) {
            Some(tokens) => tokens,
            None => return true,
        };

        // It is appropriate to update the deadline.
        critical.deadline = deadline;

        if self.drain_core(critical, tokens, lim) {
            // We synthetically "ran" at the current time minus the remaining time
            // we need to wait until the last update period.
            critical.release();
            return false;
        }

        true
    }
}

impl fmt::Debug for AcquireState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AcquireState").finish()
    }
}

/// The future associated with acquiring permits from a rate limiter using
/// [`RateLimiter::acquire`].
pub struct Acquire<'a>(AcquireFut<BorrowedRateLimiter<'a>>);

impl Acquire<'_> {
    /// Test if this acquire task is currently coordinating the rate limiter.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::future::Future;
    /// use std::sync::Arc;
    /// use std::task::Context;
    ///
    /// struct Waker;
    /// # impl std::task::Wake for Waker { fn wake(self: Arc<Self>) { } }
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = RateLimiter::builder().build();
    ///
    /// let waker = Arc::new(Waker).into();
    /// let mut cx = Context::from_waker(&waker);
    ///
    /// let a1 = limiter.acquire(1);
    /// tokio::pin!(a1);
    ///
    /// assert!(!a1.is_core());
    /// assert!(a1.as_mut().poll(&mut cx).is_pending());
    /// assert!(a1.is_core());
    ///
    /// a1.as_mut().await;
    ///
    /// // After completion this is no longer a core.
    /// assert!(!a1.is_core());
    /// # }
    /// ```
    pub fn is_core(&self) -> bool {
        self.0.is_core()
    }
}

impl Future for Acquire<'_> {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let inner = unsafe { Pin::map_unchecked_mut(self, |this| &mut this.0) };
        inner.poll(cx)
    }
}

/// The future associated with acquiring permits from a rate limiter using
/// [`RateLimiter::acquire_owned`].
pub struct AcquireOwned(AcquireFut<Arc<RateLimiter>>);

impl AcquireOwned {
    /// Test if this acquire task is currently coordinating the rate limiter.
    ///
    /// # Examples
    ///
    /// ```
    /// use leaky_bucket::RateLimiter;
    /// use std::future::Future;
    /// use std::sync::Arc;
    /// use std::task::Context;
    ///
    /// struct Waker;
    /// # impl std::task::Wake for Waker { fn wake(self: Arc<Self>) { } }
    ///
    /// # #[tokio::main] async fn main() {
    /// let limiter = Arc::new(RateLimiter::builder().build());
    ///
    /// let waker = Arc::new(Waker).into();
    /// let mut cx = Context::from_waker(&waker);
    ///
    /// let a1 = limiter.acquire_owned(1);
    /// tokio::pin!(a1);
    ///
    /// assert!(!a1.is_core());
    /// assert!(a1.as_mut().poll(&mut cx).is_pending());
    /// assert!(a1.is_core());
    ///
    /// a1.as_mut().await;
    ///
    /// // After completion this is no longer a core.
    /// assert!(!a1.is_core());
    /// # }
    /// ```
    pub fn is_core(&self) -> bool {
        self.0.is_core()
    }
}

impl Future for AcquireOwned {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let inner = unsafe { Pin::map_unchecked_mut(self, |this| &mut this.0) };
        inner.poll(cx)
    }
}

struct AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    /// Inner shared state.
    lim: T,
    /// The number of permits associated with this future.
    permits: usize,
    /// State of the acquisition.
    state: State,
    /// The internal acquire state.
    internal: AcquireState,
}

impl<T> AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    #[inline]
    fn new(lim: T, permits: usize) -> Self {
        Self {
            lim,
            permits,
            state: State::Initial,
            internal: AcquireState::INITIAL,
        }
    }

    fn is_core(&self) -> bool {
        matches!(&self.state, State::Core { .. })
    }
}

// Safety: All the internals of acquire is thread safe and correctly
// synchronized. The embedded waiter queue doesn't have anything inherently
// unsafe in it.
unsafe impl<T> Send for AcquireFut<T> where T: AsRef<RateLimiter> {}
unsafe impl<T> Sync for AcquireFut<T> where T: AsRef<RateLimiter> {}

impl<T> Future for AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = unsafe { self.get_unchecked_mut() };
        let lim = this.lim.as_ref();

        loop {
            match &mut this.state {
                State::Initial => {
                    // Safety: The task is not linked up yet, so we can safely
                    // inspect the number of permits without having to
                    // synchronize.
                    if this.permits == 0 {
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    let mut critical = lim.critical.lock();

                    // If we've hit a deadline, calculate the number of tokens
                    // to drain and perform it in line here. This is necessary
                    // because the core isn't aware of how long we sleep between
                    // each acquire, so we need to perform some of the drain
                    // work here in order to avoid acruing a debt that needs to
                    // be filled later in.
                    //
                    // If we didn't do this, and the process slept for a long
                    // time, the next time a core is acquired it would be very
                    // far removed from the expected deadline and has no idea
                    // when permits were acquired, so it would over-eagerly
                    // release a lot of acquires and accumulate permits.
                    //
                    // This is tested for in the `test_idle` suite of tests.
                    if let Some((tokens, deadline)) =
                        calculate_drain(critical.deadline, lim.interval)
                    {
                        trace!(tokens = tokens, "inline drain");
                        // We pre-emptively update the deadline of the core
                        // since it might bump, and we don't want other
                        // processes to observe that the deadline has been
                        // reached.
                        critical.deadline = deadline;
                        this.internal.drain_wait_queue(&mut critical, tokens, lim);
                    }

                    // Test the fast path first, where we simply subtract the
                    // permits available from the current balance.
                    if let Some(balance) = critical.balance.checked_sub(this.permits) {
                        critical.balance = balance;
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    let balance = mem::take(&mut critical.balance);

                    // Safety: This is done in a pinned section, so we know that
                    // the linked section stays alive for the duration of this
                    // future due to pinning guarantees.
                    unsafe {
                        this.internal.task_mut().remaining = this.permits - balance;
                    }

                    // Try to take over as core. If we're unsuccessful we just
                    // ensure that we're linked into the wait queue.
                    if !mem::take(&mut critical.available) {
                        this.internal.update(&mut critical, cx.waker());
                        this.state = State::Waiting;
                        return Poll::Pending;
                    }

                    // Safety: This is done in a pinned section, so we know that
                    // the linked section stays alive for the duration of this
                    // future due to pinning guarantees.
                    unsafe { this.internal.link_core(&mut critical, lim) };

                    trace!(until = ?critical.deadline, "taking over core and sleeping");
                    this.state = State::Core {
                        sleep: time::sleep_until(critical.deadline),
                    };

                    trace!("no immediate tokens available");
                }
                State::Waiting => {
                    // If we are complete, then return as ready.
                    //
                    // This field is atomic, so we can safely read it under shared
                    // access and do not require a lock.
                    if this.internal.complete().load(Ordering::Acquire) {
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    // Note: we need to operate under this lock to ensure that
                    // the core acquired here (or elsewhere) observes that the
                    // current task has been linked up.
                    let mut critical = lim.critical.lock();

                    // Try to take over as core. If we're unsuccessful we
                    // just ensure that we're linked into the wait queue.
                    if !mem::take(&mut critical.available) {
                        this.internal.update(&mut critical, cx.waker());
                        return Poll::Pending;
                    }

                    // Safety: This is done in a pinned section, so we know that
                    // the linked section stays alive for the duration of this
                    // future due to pinning guarantees.
                    let assumed = unsafe { this.internal.assume_core(&mut critical, lim) };

                    if !assumed {
                        // Marks as completed.
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    trace!(until = ?critical.deadline, "taking over core and sleeping");
                    this.state = State::Core {
                        sleep: time::sleep_until(critical.deadline),
                    };
                }
                State::Core { sleep } => {
                    let mut sleep = unsafe { Pin::new_unchecked(sleep) };

                    if sleep.as_mut().poll(cx).is_pending() {
                        return Poll::Pending;
                    }

                    let now = time::Instant::now();
                    trace!(now = ?now, "sleep completed");
                    let mut critical = lim.critical.lock();
                    critical.deadline = now + lim.interval;

                    // Safety: we know that we're the only one with access to core
                    // because we ensured it as we acquire the `available` lock.
                    if this.internal.drain_core(&mut critical, lim.refill, lim) {
                        critical.release();
                        this.state = State::Complete;
                        return Poll::Ready(());
                    }

                    trace!(sleep = ?lim.interval, "keeping core and sleeping");
                    sleep.as_mut().reset(critical.deadline);
                }
                State::Complete => {
                    panic!("polled after completion");
                }
            }
        }
    }
}

impl<T> Drop for AcquireFut<T>
where
    T: AsRef<RateLimiter>,
{
    fn drop(&mut self) {
        let lim = self.lim.as_ref();

        match &mut self.state {
            State::Waiting => unsafe {
                debug_assert! {
                    self.internal.linked,
                    "waiting nodes have to be linked",
                };

                // While the node is linked into the wait queue we have to
                // ensure it's only accessed under a lock, but once it's been
                // unlinked we can do what we want with it.
                let mut critical = lim.critical.lock();
                critical.waiters.remove(self.internal.task_mut().into());
            },
            State::Core { .. } => unsafe {
                let mut critical = lim.critical.lock();

                if mem::take(&mut self.internal.linked) {
                    critical.waiters.remove(self.internal.task_mut().into());
                }

                critical.release();
            },
            _ => (),
        }
    }
}

/// All of the state that is linked into the wait queue.
///
/// This is only ever accessed through raw pointer manipulation to avoid issues
/// with field aliasing.
#[repr(C)]
struct Linking {
    /// The node in the linked list.
    task: Node<Task>,
    /// If this node has been released or not. We make this an atomic to permit
    /// access to it without synchronization.
    complete: AtomicBool,
    /// Avoids noalias heuristics from kicking in on references to a `Linking`
    /// struct.
    _pin: marker::PhantomPinned,
}

/// Calculate refill amount. Returning a tuple of how much to fill and remaining
/// duration to sleep until the next refill time if appropriate.
fn calculate_drain(
    deadline: time::Instant,
    interval: time::Duration,
) -> Option<(usize, time::Instant)> {
    let now = time::Instant::now();

    if now < deadline {
        return None;
    }

    // Time elapsed in milliseconds since the last deadline.
    let millis = interval.as_millis();
    let since = now.saturating_duration_since(deadline).as_millis();

    let tokens = usize::try_from(since / millis + 1).unwrap_or(usize::MAX);
    let rem = u64::try_from(since % millis).unwrap_or(u64::MAX);

    // Calculated time remaining until the next deadline.
    let deadline = now + (interval - time::Duration::from_millis(rem));
    Some((tokens, deadline))
}

#[cfg(test)]
mod tests {
    use super::{Acquire, AcquireOwned, RateLimiter};

    fn is_send<T: Send>() {}
    fn is_sync<T: Sync>() {}

    #[test]
    fn assert_send_sync() {
        is_send::<AcquireOwned>();
        is_sync::<AcquireOwned>();

        is_send::<RateLimiter>();
        is_sync::<RateLimiter>();

        is_send::<Acquire<'_>>();
        is_sync::<Acquire<'_>>();
    }
}