1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! Eigenvalue decomposition for general matrices

use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};

/// Wraps `*geev` for general matrices
pub trait Eig_: Scalar {
    /// Calculate Right eigenvalue
    fn eig(
        calc_v: bool,
        l: MatrixLayout,
        a: &mut [Self],
    ) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)>;
}

macro_rules! impl_eig_complex {
    ($scalar:ty, $ev:path) => {
        impl Eig_ for $scalar {
            fn eig(
                calc_v: bool,
                l: MatrixLayout,
                mut a: &mut [Self],
            ) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
                let (n, _) = l.size();
                // LAPACK assumes a column-major input. A row-major input can
                // be interpreted as the transpose of a column-major input. So,
                // for row-major inputs, we we want to solve the following,
                // given the column-major input `A`:
                //
                //   A^T V = V Λ ⟺ V^T A = Λ V^T ⟺ conj(V)^H A = Λ conj(V)^H
                //
                // So, in this case, the right eigenvectors are the conjugates
                // of the left eigenvectors computed with `A`, and the
                // eigenvalues are the eigenvalues computed with `A`.
                let (jobvl, jobvr) = if calc_v {
                    match l {
                        MatrixLayout::C { .. } => (b'V', b'N'),
                        MatrixLayout::F { .. } => (b'N', b'V'),
                    }
                } else {
                    (b'N', b'N')
                };
                let mut eigs = unsafe { vec_uninit(n as usize) };
                let mut rwork = unsafe { vec_uninit(2 * n as usize) };

                let mut vl = if jobvl == b'V' {
                    Some(unsafe { vec_uninit((n * n) as usize) })
                } else {
                    None
                };
                let mut vr = if jobvr == b'V' {
                    Some(unsafe { vec_uninit((n * n) as usize) })
                } else {
                    None
                };

                // calc work size
                let mut info = 0;
                let mut work_size = [Self::zero()];
                unsafe {
                    $ev(
                        jobvl,
                        jobvr,
                        n,
                        &mut a,
                        n,
                        &mut eigs,
                        &mut vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        &mut vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        &mut work_size,
                        -1,
                        &mut rwork,
                        &mut info,
                    )
                };
                info.as_lapack_result()?;

                // actal ev
                let lwork = work_size[0].to_usize().unwrap();
                let mut work = unsafe { vec_uninit(lwork) };
                unsafe {
                    $ev(
                        jobvl,
                        jobvr,
                        n,
                        &mut a,
                        n,
                        &mut eigs,
                        &mut vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        &mut vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        &mut work,
                        lwork as i32,
                        &mut rwork,
                        &mut info,
                    )
                };
                info.as_lapack_result()?;

                // Hermite conjugate
                if jobvl == b'V' {
                    for c in vl.as_mut().unwrap().iter_mut() {
                        c.im = -c.im
                    }
                }

                Ok((eigs, vr.or(vl).unwrap_or(Vec::new())))
            }
        }
    };
}

impl_eig_complex!(c64, lapack::zgeev);
impl_eig_complex!(c32, lapack::cgeev);

macro_rules! impl_eig_real {
    ($scalar:ty, $ev:path) => {
        impl Eig_ for $scalar {
            fn eig(
                calc_v: bool,
                l: MatrixLayout,
                mut a: &mut [Self],
            ) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
                let (n, _) = l.size();
                // LAPACK assumes a column-major input. A row-major input can
                // be interpreted as the transpose of a column-major input. So,
                // for row-major inputs, we we want to solve the following,
                // given the column-major input `A`:
                //
                //   A^T V = V Λ ⟺ V^T A = Λ V^T ⟺ conj(V)^H A = Λ conj(V)^H
                //
                // So, in this case, the right eigenvectors are the conjugates
                // of the left eigenvectors computed with `A`, and the
                // eigenvalues are the eigenvalues computed with `A`.
                //
                // We could conjugate the eigenvalues instead of the
                // eigenvectors, but we have to reconstruct the eigenvectors
                // into new matrices anyway, and by not modifying the
                // eigenvalues, we preserve the nice ordering specified by
                // `sgeev`/`dgeev`.
                let (jobvl, jobvr) = if calc_v {
                    match l {
                        MatrixLayout::C { .. } => (b'V', b'N'),
                        MatrixLayout::F { .. } => (b'N', b'V'),
                    }
                } else {
                    (b'N', b'N')
                };
                let mut eig_re = unsafe { vec_uninit(n as usize) };
                let mut eig_im = unsafe { vec_uninit(n as usize) };

                let mut vl = if jobvl == b'V' {
                    Some(unsafe { vec_uninit((n * n) as usize) })
                } else {
                    None
                };
                let mut vr = if jobvr == b'V' {
                    Some(unsafe { vec_uninit((n * n) as usize) })
                } else {
                    None
                };

                // calc work size
                let mut info = 0;
                let mut work_size = [0.0];
                unsafe {
                    $ev(
                        jobvl,
                        jobvr,
                        n,
                        &mut a,
                        n,
                        &mut eig_re,
                        &mut eig_im,
                        vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        &mut work_size,
                        -1,
                        &mut info,
                    )
                };
                info.as_lapack_result()?;

                // actual ev
                let lwork = work_size[0].to_usize().unwrap();
                let mut work = unsafe { vec_uninit(lwork) };
                unsafe {
                    $ev(
                        jobvl,
                        jobvr,
                        n,
                        &mut a,
                        n,
                        &mut eig_re,
                        &mut eig_im,
                        vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
                        n,
                        &mut work,
                        lwork as i32,
                        &mut info,
                    )
                };
                info.as_lapack_result()?;

                // reconstruct eigenvalues
                let eigs: Vec<Self::Complex> = eig_re
                    .iter()
                    .zip(eig_im.iter())
                    .map(|(&re, &im)| Self::complex(re, im))
                    .collect();

                if !calc_v {
                    return Ok((eigs, Vec::new()));
                }

                // Reconstruct eigenvectors into complex-array
                // --------------------------------------------
                //
                // From LAPACK API https://software.intel.com/en-us/node/469230
                //
                // - If the j-th eigenvalue is real,
                //   - v(j) = VR(:,j), the j-th column of VR.
                //
                // - If the j-th and (j+1)-st eigenvalues form a complex conjugate pair,
                //   - v(j)   = VR(:,j) + i*VR(:,j+1)
                //   - v(j+1) = VR(:,j) - i*VR(:,j+1).
                //
                // In the C-layout case, we need the conjugates of the left
                // eigenvectors, so the signs should be reversed.

                let n = n as usize;
                let v = vr.or(vl).unwrap();
                let mut eigvecs = unsafe { vec_uninit(n * n) };
                let mut col = 0;
                while col < n {
                    if eig_im[col] == 0. {
                        // The corresponding eigenvalue is real.
                        for row in 0..n {
                            let re = v[row + col * n];
                            eigvecs[row + col * n] = Self::complex(re, 0.);
                        }
                        col += 1;
                    } else {
                        // This is a complex conjugate pair.
                        assert!(col + 1 < n);
                        for row in 0..n {
                            let re = v[row + col * n];
                            let mut im = v[row + (col + 1) * n];
                            if jobvl == b'V' {
                                im = -im;
                            }
                            eigvecs[row + col * n] = Self::complex(re, im);
                            eigvecs[row + (col + 1) * n] = Self::complex(re, -im);
                        }
                        col += 2;
                    }
                }

                Ok((eigs, eigvecs))
            }
        }
    };
}

impl_eig_real!(f64, lapack::dgeev);
impl_eig_real!(f32, lapack::sgeev);