1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//! The inspection mechanism for tracing and interrupting reduction and
//! evaluation functions.
//!
//! The inspection mechanism allows to trace the steps of reduction and
//! evaluation functions and to stop reduction or evaluation depending on some
//! condition.
//!
//! The central piece of the inspection mechanism is the
//! [`Inspect`](trait.Inspect.html) trait. The `reduce_inspected` and
//! `evaluate_inspected` functions take an implementation of the `Inspect` trait
//! to extend the processing with some additional functionality. An
//! implementation of the `Inspect` trait is called an inspection.
//!
//! This module provides some implementation of the `Inspect` trait:
//!
//! * [Limit](struct.Limit.html) : Limits the number of steps executed during
//!   evaluation or reduction.
//! * [Trace](struct.Limit.html) : Allows to log or print the results of each
//!   step during evaluation or reduction.
//! * [Collect](struct.Collect.html) : Collects clones of the term resulting
//!   from each single step during evaluation or reduction.
//!
//! Inspections can be combined using the combinator inspections:
//!
//! * [And](struct.And.html) : Combines two inspections into one inspection that
//!   stops processing if both inspections return `Stop::Yes`.
//! * [Or](struct.Or.html) : Combines two inspections into one inspection that
//!   stops processing if one of them returns `Stop::Yes`.
//!
//! To construct the combinator inspections in a more concise syntax the
//! functions [`and`](fn.and.html) and [`or`](fn.or.html) are provided.

use std::iter::IntoIterator;
use std::ops::{BitAnd, BitOr};
use std::vec;

use term::Term;

/// The inspect trait allows to inspect the current term before each step
/// during processing of a term and conditionally stop further processing.
///
/// This trait can be used to trace the terms before each step during processing
/// or to limit the number of steps being executed on some condition like
/// the number of steps performed so far.
///
/// The inspect function can hold some state and modify it according to the
/// implemented logic.
pub trait Inspect {
    /// Inspects the term before the next step during processing and returns
    /// whether to continue processing or to stop it.
    ///
    /// If `Stop::Yes` is returned the processing will stop immediately without
    /// performing the next step.
    fn inspect(&mut self, term: &Term) -> Stop;
}

/// Indicator whether to stop or continue some processing.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Stop {
    /// Stop processing
    Yes,
    /// Continue processing
    No,
}

impl BitAnd for Stop {
    type Output = Self;

    fn bitand(self, rhs: Self) -> <Self as BitAnd<Self>>::Output {
        use self::Stop::*;
        match (self, rhs) {
            (Yes, Yes) => Yes,
            _ => No,
        }
    }
}

impl BitOr for Stop {
    type Output = Self;

    fn bitor(self, rhs: Self) -> <Self as BitOr<Self>>::Output {
        use self::Stop::*;
        match (self, rhs) {
            (No, No) => No,
            _ => Yes,
        }
    }
}

/// Combines two given inspections into an `And` combinator inspection.
///
/// An inspection is any implementation of the `Inspect` trait.
pub fn and<LHS, RHS>(lhs: LHS, rhs: RHS) -> And<LHS, RHS> {
    And::new(lhs, rhs)
}

/// AND combinator for two inspections that returns `Stop::Yes` if both
/// inspections return `Stop::Yes`.
///
/// An inspection is any implementation of the `Inspect` trait.
///
/// The combinator always calls both inspections even if the first inspection
/// results in a stop indicator that will not change due to the result of the
/// second inspection.
#[allow(missing_debug_implementations)]
pub struct And<LHS, RHS> {
    lhs: LHS,
    rhs: RHS,
}

impl<LHS, RHS> And<LHS, RHS> {
    /// Constructs a new `And` combinator inspection out of the two given
    /// inspections.
    pub fn new(lhs: LHS, rhs: RHS) -> Self {
        And { lhs, rhs }
    }

    /// Deconstructs this inspection into its two containing inspections.
    pub fn unwrap(self) -> (LHS, RHS) {
        (self.lhs, self.rhs)
    }

    /// Returns a reference to the left inspection.
    pub fn left(&self) -> &LHS {
        &self.lhs
    }

    /// Returns a reference to the right inspection.
    pub fn right(&self) -> &RHS {
        &self.rhs
    }
}

impl<LHS, RHS> Inspect for And<LHS, RHS>
where
    LHS: Inspect,
    RHS: Inspect,
{
    fn inspect(&mut self, term: &Term) -> Stop {
        self.lhs.inspect(term) & self.rhs.inspect(term)
    }
}

/// Combines the two given inspections into an `Or` combinator inspection.
///
/// An inspection is any implementation of the `Inspect` trait.
///
/// # Examples
///
/// ```
/// use lamcal::inspect::{or, Collect, Limit};
/// use lamcal::{app, lam, var, Enumerate, NormalOrder};
///
/// let mut term = app(
///     lam("x", app(lam("y", app(var("x"), var("y"))), var("z"))),
///     var("a"),
/// );
///
/// let mut inspection = or(Limit::new(42), Collect::new());
///
/// term.reduce_inspected::<NormalOrder<Enumerate>, _>(&mut inspection);
///
/// assert_eq!(inspection.left().count(), 2);
/// assert_eq!(
///     inspection.right().terms(),
///     &[
///         app(
///             lam("x", app(lam("y", app(var("x"), var("y"))), var("z"))),
///             var("a")
///         ),
///         app(lam("x", app(var("x"), var("z"))), var("a")),
///     ]
/// );
/// assert_eq!(term, app(var("a"), var("z")));
/// ```
pub fn or<LHS, RHS>(lhs: LHS, rhs: RHS) -> Or<LHS, RHS> {
    Or::new(lhs, rhs)
}

/// OR combinator for two inspections that returns `Stop::Yes` if one of the
/// inspections returns `Stop::Yes`.
///
/// An inspection is any implementation of the `Inspect` trait.
///
/// The combinator always calls both inspections even if the first inspection
/// results in a stop indicator that will not change due to the result of the
/// second inspection.
#[allow(missing_debug_implementations)]
pub struct Or<LHS, RHS> {
    lhs: LHS,
    rhs: RHS,
}

impl<LHS, RHS> Or<LHS, RHS> {
    /// Constructs a new `Or` combinator inspection out of the two given
    /// inspections.
    pub fn new(lhs: LHS, rhs: RHS) -> Self {
        Or { lhs, rhs }
    }

    /// Deconstructs this inspection into its two containing inspections.
    pub fn unwrap(self) -> (LHS, RHS) {
        (self.lhs, self.rhs)
    }

    /// Returns a reference to the left inspection.
    pub fn left(&self) -> &LHS {
        &self.lhs
    }

    /// Returns a reference to the right inspection.
    pub fn right(&self) -> &RHS {
        &self.rhs
    }
}

impl<LHS, RHS> Inspect for Or<LHS, RHS>
where
    LHS: Inspect,
    RHS: Inspect,
{
    fn inspect(&mut self, term: &Term) -> Stop {
        self.lhs.inspect(term) | self.rhs.inspect(term)
    }
}

/// No operation inspection.
///
/// An inspection that does nothing and always returns to don't stop thus
/// continue with processing.
#[allow(missing_copy_implementations)]
#[derive(Debug, Clone, PartialEq)]
pub struct NoOp;

impl Inspect for NoOp {
    fn inspect(&mut self, _term: &Term) -> Stop {
        Stop::No
    }
}

/// Limits the number of steps a reduction or evaluation function performs
/// until processing is stopped.
///
/// This inspection counts each call to the `Inspect::inspect` function. If the
/// number of calls counted so far is less than the limit for which the `Limit`
/// has been constructed it returns `Stop::No` to continue processing. If the
/// limit has been reached it returns `Stop::Yes` to instruct the evaluation
/// or reduction function to stop processing.
///
/// A limit of 0 means that not reduction will be performed at all.
///
/// # Examples
///
/// ```
/// # use lamcal::{app, lam, var, Enumerate, NormalOrder};
/// # use lamcal::inspect::Limit;
/// let mut term = app(
///     lam("a", app(var("a"), var("a"))),
///     lam("a", app(var("a"), var("a"))),
/// );
///
/// term.reduce_inspected::<NormalOrder<Enumerate>, _>(&mut Limit::new(5));
/// ```
#[allow(missing_copy_implementations)]
#[derive(Debug, Clone, PartialEq)]
pub struct Limit {
    limit: u32,
    count: u32,
}

impl Limit {
    /// Constructs a new `Limit` inspection with the given number of steps as
    /// the limit of reduction or evaluation steps.
    pub fn new(limit: u32) -> Self {
        Limit { limit, count: 0 }
    }

    /// The limit for the number steps.
    pub fn limit(&self) -> u32 {
        self.limit
    }

    /// The number of steps counted so far.
    pub fn count(&self) -> u32 {
        self.count
    }
}

impl Default for Limit {
    fn default() -> Self {
        Limit::new(::std::u32::MAX)
    }
}

impl Inspect for Limit {
    fn inspect(&mut self, _term: &Term) -> Stop {
        if self.count < self.limit {
            self.count += 1;
            Stop::No
        } else {
            Stop::Yes
        }
    }
}

/// Trace turns a closure into an implementation of the `Inspect` trait.
///
/// Trace is an implementation of `Inspect` that takes a closure to be called
/// before each reduction or evaluation step. It always returns `Stop::No`.
///
/// # Examples
///
/// ```
/// # use lamcal::{app, lam, var, Enumerate, NormalOrder};
/// # use lamcal::inspect::Trace;
/// let mut term = app(
///     lam("x", app(lam("y", app(var("x"), var("y"))), var("z"))),
///     var("a"),
/// );
///
/// term.reduce_inspected::<NormalOrder<Enumerate>, _>(&mut Trace::new(|to_reduce| {
///     println!("reducing: {}", to_reduce);
/// }));
///
/// assert_eq!(term, app(var("a"), var("z")));
/// ```
#[allow(missing_debug_implementations)]
pub struct Trace<Log> {
    log: Log,
}

impl<Log> Trace<Log>
where
    Log: Fn(&Term),
{
    /// Constructs a new `Trace` inspection from the given closure.
    pub fn new(log: Log) -> Self {
        Trace { log }
    }

    /// Returns a reference to the closure of this trace inspection.
    pub fn log(&self) -> &Log {
        &self.log
    }
}

impl<Log> Inspect for Trace<Log>
where
    Log: Fn(&Term),
{
    fn inspect(&mut self, term: &Term) -> Stop {
        (self.log)(term);
        Stop::No
    }
}

/// Collects clones of the terms representing the results of each step during
/// reduction or evaluation of a term.
#[derive(Debug, Clone, PartialEq)]
pub struct Collect {
    terms: Vec<Term>,
}

impl Collect {
    /// Constructs a new `Collect` inspection.
    pub fn new() -> Self {
        Collect { terms: Vec::new() }
    }

    /// Unwraps the underlying vector of collected terms.
    pub fn unwrap(self) -> Vec<Term> {
        self.terms
    }

    /// Returns a reference to a slice of collected terms.
    pub fn terms(&self) -> &[Term] {
        &self.terms
    }
}

impl Default for Collect {
    fn default() -> Self {
        Collect { terms: Vec::new() }
    }
}

impl IntoIterator for Collect {
    type Item = Term;
    type IntoIter = vec::IntoIter<Term>;

    fn into_iter(self) -> <Self as IntoIterator>::IntoIter {
        self.terms.into_iter()
    }
}

impl Inspect for Collect {
    fn inspect(&mut self, term: &Term) -> Stop {
        self.terms.push(term.clone());
        Stop::No
    }
}

#[cfg(test)]
mod tests;