1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//! Definition of the lambda calculus term.
//!
//! This implementation of the lambda calculus uses the classic notation.
//! Currently the De Bruin index notation is not supported.

use std::fmt::{self, Display};

/// Constructs a variable of the given name.
///
/// This is a convenience function for constructing a
/// [`Term`](enum.Term.html) of variant `Term::Var` in a readable form with
/// minimal keystrokes. It takes any value that can be converted into a `String`
/// and returns `Term::Var(name)`.
///
/// This function combined with the functions [`lam`](fn.lam.html) and
/// [`app`](fn.app.html) let us construct any [`Term`](enum.Term.html) in the
/// pure lambda calculus.
///
/// # Example
///
/// ```
/// # extern crate lamcal;
/// # use lamcal::{var, Term};
/// let variable = var("x");
///
/// assert_eq!(variable, Term::Var("x".to_string()));
/// ```
pub fn var(name: impl Into<String>) -> Term {
    Term::Var(name.into())
}

/// Constructs a lambda abstraction with given parameter and body.
///
/// This is a convenience function for constructing a [`Term`](enum.Term.html)
/// of variant `Term::Lam` in a readable form with minimal keystrokes. It takes
/// any value that can be converted into a `String` to form a bound variable
/// (the parameter of the abstraction) and a `Term` for the body of the
/// abstraction.
///
/// This function combined with the functions [`var`](fn.var.html) and
/// [`app`](fn.app.html) let us construct any [`Term`](enum.Term.html) in the
/// pure lambda calculus.
///
/// # Example
///
/// ```
/// # extern crate lamcal;
/// # use lamcal::{lam, var, Term, Var};
/// let abstraction = lam("x", var("x"));
///
/// assert_eq!(
///     abstraction,
///     Term::Lam(Var("x".to_string()), Box::new(Term::Var("x".to_string())))
/// );
/// ```
pub fn lam(param: impl Into<String>, body: Term) -> Term {
    Term::Lam(Var(param.into()), Box::new(body))
}

/// Constructs a function application with the `lhs` term to be applied to the
/// `rhs` term.
///
/// This is a convenience function for constructing a [`Term`](enum.Term.html)
/// of variant `Term::App` in a readable form with minimal keystrokes. It takes
/// two `Term`s as its input and returns a `Term::App` with the first `Term` to
/// be applied to the second `Term`.
///
/// This function combined with the functions [`var`](fn.var.html) and
/// [`lam`](fn.lam.html) let us construct any [`Term`](enum.Term.html) in the
/// pure lambda calculus.
///
/// # Example
///
/// ```
/// # extern crate lamcal;
/// # use lamcal::{app, lam, var, Term, Var};
/// let application = app(lam("x", var("x")), var("y"));
///
/// assert_eq!(
///     application,
///     Term::App(
///         Box::new(Term::Lam(
///             Var("x".to_string()),
///             Box::new(Term::Var("x".to_string()))
///         )),
///         Box::new(Term::Var("y".to_string()))
///     )
/// );
/// ```
pub fn app(lhs: Term, rhs: Term) -> Term {
    Term::App(Box::new(lhs), Box::new(rhs))
}

/// A term in the lambda calculus.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Term {
    /// A variable (x)
    ///
    /// A character or string representing a parameter or mathematical/logical
    /// value.
    Var(String),
    /// An abstraction (λx.M)
    ///
    /// Function definition (M is a lambda term). The variable x becomes bound
    /// in the expression.
    Lam(Var, Box<Term>),
    /// An application (M N)
    ///
    /// Applying a function to an argument. M and N are lambda terms.
    App(Box<Term>, Box<Term>),
}

impl Display for Term {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::Term::*;
        match self {
            Var(name) => write!(f, "{}", name),
            Lam(param, body) => write!(f, "λ{}.{}", param, body),
            App(lhs, rhs) => match **lhs {
                Lam(_, _) => write!(f, "({}) {}", lhs, rhs),
                _ => write!(f, "{} {}", lhs, rhs),
            },
        }
    }
}

impl<'a> From<&'a Term> for Term {
    fn from(expr: &Term) -> Self {
        expr.to_owned()
    }
}

impl From<Var> for Term {
    fn from(var: Var) -> Self {
        Term::Var(var.0)
    }
}

/// A variable with a given name.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Var(pub String);

impl Display for Var {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl AsRef<str> for Var {
    fn as_ref(&self) -> &str {
        &self.0
    }
}

impl Var {
    /// Constructs a new variable of given name.
    pub fn new(name: impl Into<String>) -> Self {
        Var(name.into())
    }

    /// Unwraps the name out of the variable.
    pub fn unwrap(self) -> String {
        self.0
    }
}

/// The app! macro can be used to conveniently construct an sequence of function
/// applications.
///
/// # Example
///
/// ```
/// #[macro_use]
/// extern crate lamcal;
/// # use lamcal::{app, var, lam};
///
/// # fn main() {
/// let expr = app![
///     lam("x", var("x")),
///     lam("y", app!(var("x"), var("y"))),
///     var("z")
/// ];
///
/// assert_eq!(
///     expr,
///     app(
///         app(lam("x", var("x")), lam("y", app(var("x"), var("y")))),
///         var("z")
///     )
/// );
/// # }
/// ```
#[macro_export]
macro_rules! app {
    ($term1:expr, $($term2:expr),+) => {
        {
            let mut __term = $term1;
            $(__term = app(__term, $term2);)*
            __term
        }
    }
}
//
//#[macro_export]
//macro_rules! lam {
//    ($var1:expr $(, $var2:expr)*, $term:expr) => {
//        {
//            use std::mem;
//            let mut __term = Term::Lam(Var($var1.into()),
// Term::Var(String::new()));            $(if let Term::Lam(_, mut ref body) =
// __term {                let mut __term2 = Term::Lam(Var($var2.into(),
// Term::Var(String::new())));                mem::swap(&mut **body, &mut
// __term2);            })*
//            if let Term::Lam(_, mut ref body) = __term {
//                mem::swap(&mut **body, &mut $term);
//            }
//            __term
//        }
//    }
//}

#[cfg(test)]
mod tests;