1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#![warn(missing_docs, rust_2018_idioms)]
//#![deny(warnings)]
//! Enriches the `lambda` crate with [`http`](https://github.com/hyperium/http)
//! types targeting AWS [ALB](https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html), [API Gateway](https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html) REST and HTTP API lambda integrations.
//!
//! This crate abstracts over all of these trigger events using standard [`http`](https://github.com/hyperium/http) types minimizing the mental overhead
//! of understanding the nuances and variation between trigger details allowing you to focus more on your application while also giving you to the maximum flexibility to
//! transparently use whichever lambda trigger suits your application and cost optimizations best.
//!
//! # Examples
//!
//! ## Hello World
//!
//! The following example is how you would structure your Lambda such that you have a `main` function where you explicitly invoke
//! `lambda_http::run` in combination with the [`service_fn`](fn.service_fn.html) function. This pattern allows you to utilize global initialization
//! of tools such as loggers, to use on warm invokes to the same Lambda function after the first request, helping to reduce the latency of
//! your function's execution path.
//!
//! ```rust,no_run
//! use lambda_http::{service_fn, Error};
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Error> {
//!     // initialize dependencies once here for the lifetime of your
//!     // lambda task
//!     lambda_http::run(service_fn(|request| async {
//!         Result::<&str, std::convert::Infallible>::Ok("👋 world!")
//!     })).await?;
//!     Ok(())
//! }
//! ```
//!
//! ## Leveraging trigger provided data
//!
//! You can also access information provided directly from the underlying trigger events,
//! like query string parameters, or Lambda function context, with the [`RequestExt`] trait.
//!
//! ```rust,no_run
//! use lambda_http::{service_fn, Error, RequestExt, IntoResponse, Request};
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Error> {
//!     lambda_http::run(service_fn(hello)).await?;
//!     Ok(())
//! }
//!
//! async fn hello(
//!     request: Request
//! ) -> Result<impl IntoResponse, std::convert::Infallible> {
//!     let _context = request.lambda_context_ref();
//!
//!     Ok(format!(
//!         "hello {}",
//!         request
//!             .query_string_parameters_ref()
//!             .and_then(|params| params.first("name"))
//!             .unwrap_or_else(|| "stranger")
//!     ))
//! }
//! ```

// only externed because maplit doesn't seem to play well with 2018 edition imports
#[cfg(test)]
#[macro_use]
extern crate maplit;

pub use http::{self, Response};
/// Utilities to initialize and use `tracing` and `tracing-subscriber` in Lambda Functions.
#[cfg(feature = "tracing")]
pub use lambda_runtime::tracing;
pub use lambda_runtime::{self, service_fn, tower, Context, Error, LambdaEvent, Service};
use request::RequestFuture;
use response::ResponseFuture;

mod deserializer;
pub mod ext;
pub mod request;
mod response;
pub use crate::{
    ext::{RequestExt, RequestPayloadExt},
    response::IntoResponse,
};
use crate::{
    request::{LambdaRequest, RequestOrigin},
    response::LambdaResponse,
};

// Reexported in its entirety, regardless of what feature flags are enabled
// because working with many of these types requires other types in, or
// reexported by, this crate.
pub use aws_lambda_events;

pub use aws_lambda_events::encodings::Body;
use std::{
    future::Future,
    marker::PhantomData,
    pin::Pin,
    task::{Context as TaskContext, Poll},
};

mod streaming;
pub use streaming::run_with_streaming_response;

/// Type alias for `http::Request`s with a fixed [`Body`](enum.Body.html) type
pub type Request = http::Request<Body>;

/// Future that will convert an [`IntoResponse`] into an actual [`LambdaResponse`]
///
/// This is used by the `Adapter` wrapper and is completely internal to the `lambda_http::run` function.
#[doc(hidden)]
pub enum TransformResponse<'a, R, E> {
    Request(RequestOrigin, RequestFuture<'a, R, E>),
    Response(RequestOrigin, ResponseFuture),
}

impl<'a, R, E> Future for TransformResponse<'a, R, E>
where
    R: IntoResponse,
{
    type Output = Result<LambdaResponse, E>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut TaskContext<'_>) -> Poll<Self::Output> {
        match *self {
            TransformResponse::Request(ref mut origin, ref mut request) => match request.as_mut().poll(cx) {
                Poll::Ready(Ok(resp)) => {
                    *self = TransformResponse::Response(origin.clone(), resp.into_response());
                    self.poll(cx)
                }
                Poll::Ready(Err(err)) => Poll::Ready(Err(err)),
                Poll::Pending => Poll::Pending,
            },
            TransformResponse::Response(ref mut origin, ref mut response) => match response.as_mut().poll(cx) {
                Poll::Ready(resp) => Poll::Ready(Ok(LambdaResponse::from_response(origin, resp))),
                Poll::Pending => Poll::Pending,
            },
        }
    }
}

/// Wraps a `Service<Request>` in a `Service<LambdaEvent<Request>>`
///
/// This is completely internal to the `lambda_http::run` function.
#[doc(hidden)]
pub struct Adapter<'a, R, S> {
    service: S,
    _phantom_data: PhantomData<&'a R>,
}

impl<'a, R, S, E> From<S> for Adapter<'a, R, S>
where
    S: Service<Request, Response = R, Error = E>,
    S::Future: Send + 'a,
    R: IntoResponse,
{
    fn from(service: S) -> Self {
        Adapter {
            service,
            _phantom_data: PhantomData,
        }
    }
}

impl<'a, R, S, E> Service<LambdaEvent<LambdaRequest>> for Adapter<'a, R, S>
where
    S: Service<Request, Response = R, Error = E>,
    S::Future: Send + 'a,
    R: IntoResponse,
{
    type Response = LambdaResponse;
    type Error = E;
    type Future = TransformResponse<'a, R, Self::Error>;

    fn poll_ready(&mut self, cx: &mut core::task::Context<'_>) -> core::task::Poll<Result<(), Self::Error>> {
        self.service.poll_ready(cx)
    }

    fn call(&mut self, req: LambdaEvent<LambdaRequest>) -> Self::Future {
        let request_origin = req.payload.request_origin();
        let event: Request = req.payload.into();
        let fut = Box::pin(self.service.call(event.with_lambda_context(req.context)));

        TransformResponse::Request(request_origin, fut)
    }
}

/// Starts the Lambda Rust runtime and begins polling for events on the [Lambda
/// Runtime APIs](https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html).
///
/// This takes care of transforming the LambdaEvent into a [`Request`] and then
/// converting the result into a [`LambdaResponse`].
pub async fn run<'a, R, S, E>(handler: S) -> Result<(), Error>
where
    S: Service<Request, Response = R, Error = E>,
    S::Future: Send + 'a,
    R: IntoResponse,
    E: std::fmt::Debug + std::fmt::Display,
{
    lambda_runtime::run(Adapter::from(handler)).await
}

#[cfg(test)]
mod test_adapter {
    use std::task::{Context, Poll};

    use crate::{
        http::{Response, StatusCode},
        lambda_runtime::LambdaEvent,
        request::LambdaRequest,
        response::LambdaResponse,
        tower::{util::BoxService, Service, ServiceBuilder, ServiceExt},
        Adapter, Body, Request,
    };

    // A middleware that logs requests before forwarding them to another service
    struct LogService<S> {
        inner: S,
    }

    impl<S> Service<LambdaEvent<LambdaRequest>> for LogService<S>
    where
        S: Service<LambdaEvent<LambdaRequest>>,
    {
        type Response = S::Response;
        type Error = S::Error;
        type Future = S::Future;

        fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
            self.inner.poll_ready(cx)
        }

        fn call(&mut self, event: LambdaEvent<LambdaRequest>) -> Self::Future {
            // Log the request
            println!("Lambda event: {event:#?}");

            self.inner.call(event)
        }
    }

    /// This tests that `Adapter` can be used in a `tower::Service` where the user
    /// may require additional middleware between `lambda_runtime::run` and where
    /// the `LambdaEvent` is converted into a `Request`.
    #[test]
    fn adapter_is_boxable() {
        let _service: BoxService<LambdaEvent<LambdaRequest>, LambdaResponse, http::Error> = ServiceBuilder::new()
            .layer_fn(|service| {
                // This could be any middleware that logs, inspects, or manipulates
                // the `LambdaEvent` before it's converted to a `Request` by `Adapter`.

                LogService { inner: service }
            })
            .layer_fn(Adapter::from)
            .service_fn(|_event: Request| async move { Response::builder().status(StatusCode::OK).body(Body::Empty) })
            .boxed();
    }
}