1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! A parser for lambda expressions with
//! [De Bruijn indices](https://en.wikipedia.org/wiki/De_Bruijn_index)

use term::*;
use term::Term::*;
use self::Token::*;
use self::Error::*;
use self::Expression::*;

/// A type to represent a parsing error.
#[derive(Debug, PartialEq)]
pub enum Error {
    InvalidCharacter((usize, char)),
    InvalidExpression,
    EmptyExpression
}

#[derive(Debug, PartialEq)]
enum Token {
    Lambda,
    Lparen,
    Rparen,
    Number(usize)
}

fn tokenize(input: &str) -> Result<Vec<Token>, Error> {
    let mut chars = input.chars();
    let mut tokens = Vec::new();
    let mut position = 0;

    while let Some(c) = chars.next() {
        match c {
     '\\' | 'λ' => { tokens.push(Lambda) },
            '(' => { tokens.push(Lparen) },
            ')' => { tokens.push(Rparen) },
             x  => {
                if let Some(n) = x.to_digit(16) {
                    tokens.push(Number(n as usize))
                } else if x.is_whitespace() {
                    ()
                } else {
                    return Err(InvalidCharacter((position, x)))
                }
            }
        }
        position += if c == 'λ' { 2 } else { 1 };
    }

    Ok(tokens)
}

#[derive(Debug, PartialEq)]
enum Expression {
    Abstraction,
    Sequence(Vec<Expression>),
    Variable(usize)
}

fn _get_ast(tokens: &[Token], pos: &mut usize) -> Result<Expression, Error> {
    let mut expr = Vec::new();

    if tokens.is_empty() { return Err(EmptyExpression) }

    while *pos < tokens.len() {
        match tokens[*pos] {
            Lambda => {
                expr.push(Abstraction)
            },
            Number(i) => {
                expr.push(Variable(i))
            },
            Lparen => {
                *pos += 1;
                let subtree = try!(_get_ast(&tokens, pos));
                expr.push(subtree);
            },
            Rparen => {
                return Ok(Sequence(expr))
            }
        }
        *pos += 1;
    }

    Ok(Sequence(expr))
}

fn get_ast(tokens: &[Token]) -> Result<Expression, Error> {
    let mut pos = 0;

    _get_ast(tokens, &mut pos)
}

/// Parses the input lambda expression to a `Term`; the lambda can be represented either with the
/// greek letter (λ) or a backslash (\\ - less aesthetic, but only one byte in size).
///
/// # Example
/// ```
/// use lambda_calculus::parser::parse;
/// use lambda_calculus::arithmetic::{succ, pred};
///
/// assert_eq!(parse(&"λ λ λ 2 (3 2 1)"), Ok(succ()));
/// assert_eq!(parse(&r#"\ \ \ 2 (3 2 1)"#), Ok(succ()));
/// assert_eq!(parse(&"λλλ3(λλ1(24))(λ2)(λ1)"), Ok(pred()));
/// ```
pub fn parse(input: &str) -> Result<Term, Error> {
    let tokens = try!(tokenize(input));
    let ast = try!(get_ast(&tokens));

    let exprs = try!(if let Sequence(exprs) = ast { Ok(exprs) } else { Err(InvalidExpression) });

    let mut stack = Vec::new();
    let mut output = Vec::new();
    let term = fold_exprs(&exprs, &mut stack, &mut output);

    term
}

fn fold_exprs(exprs: &[Expression], stack: &mut Vec<Expression>, output: &mut Vec<Term>)
    -> Result<Term, Error>
{
    let mut iter = exprs.iter();

    while let Some(ref expr) = iter.next() {
        match **expr {
            Variable(i) => output.push(Var(i)),
            Abstraction => stack.push(Abstraction),
            Sequence(ref exprs) => {
                let mut stack2 = Vec::new();
                let mut output2 = Vec::new();
                let subexpr = try!(fold_exprs(&exprs, &mut stack2, &mut output2));
                output.push(subexpr)
            }
        }
    }

    let mut ret = try!(fold_terms(output.drain(..).collect()));

    while let Some(Abstraction) = stack.pop() {
        ret = abs(ret);
    }

    Ok(ret)
}

fn fold_terms(mut terms: Vec<Term>) -> Result<Term, Error> {
    if terms.len() > 1 {
        terms.reverse();
        let fst = terms.pop().unwrap();
        terms.reverse();
        Ok( terms.into_iter().fold(fst, |acc, t| app(acc, t)) )
    } else if terms.len() == 1 {
        Ok( terms.pop().unwrap() )
    } else {
        Err(EmptyExpression)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn tokenization_error() {
        assert_eq!(tokenize(&"λλx2"), Err(InvalidCharacter((4, 'x'))))
    }

    #[test]
    fn tokenization_success() {
        let quine = "λ 1 ( (λ 1 1) (λ λ λ λ λ 1 4 (3 (5 5) 2) ) ) 1";
        let tokens = tokenize(&quine);

        assert!(tokens.is_ok());
        assert_eq!(tokens.unwrap(), vec![Lambda, Number(1), Lparen, Lparen, Lambda, Number(1),
            Number(1), Rparen, Lparen, Lambda, Lambda, Lambda, Lambda, Lambda, Number(1),
            Number(4), Lparen, Number(3), Lparen, Number(5), Number(5), Rparen, Number(2),
            Rparen, Rparen, Rparen, Number(1)]);
    }

    #[test]
    fn alternative_lambda_parsing() {
        assert_eq!(parse(&"\\\\\\2(321)"), parse(&"λλλ2(321)"))
    }

    #[test]
    fn succ_ast() {
        let tokens = tokenize(&"λλλ2(321)").unwrap();
        let ast = get_ast(&tokens);

        assert_eq!(ast,
            Ok(Sequence(vec![
                Abstraction,
                Abstraction,
                Abstraction,
                Variable(2),
                Sequence(vec![
                    Variable(3),
                    Variable(2),
                    Variable(1)
                ])
            ])
        ));
    }

    #[test]
    fn parse_y() {
        let y = "λ(λ2(11))(λ2(11))";
        assert_eq!(&*format!("{}", parse(&y).expect("parsing Y failed!")), y);
    }

    #[test]
    fn parse_quine() {
        let quine = "λ1((λ11)(λλλλλ14(3(55)2)))1";
        assert_eq!(&*format!("{}", parse(&quine).expect("parsing QUINE failed!")), quine);
    }

    #[test]
    fn parse_blc() {
        let blc = "(λ11)(λλλ1(λλλλ3(λ5(3(λ2(3(λλ3(λ123)))(4(λ4(λ31(21))))))(1(2(λ12))\
                   (λ4(λ4(λ2(14)))5))))(33)2)(λ1((λ11)(λ11)))";
        assert_eq!(&*format!("{}", parse(&blc).expect("parsing BLC failed!")), blc);
    }
}