1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
use slab::Slab;
use std::borrow::Borrow;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
mod iterators;
use iterators::{LabelIter, VertexIter};

pub type VertexIndex = usize;
pub type EdgeIndex = (VertexIndex, VertexIndex);

#[derive(Default, Clone)]
struct Vertex<V: Hash + Eq + Clone> {
    pub preset: HashSet<VertexIndex>,
    pub posset: HashSet<VertexIndex>,
    pub aliases: HashSet<V>,
}

impl<V: Hash + Eq + Clone> Vertex<V> {
    pub fn new() -> Self {
        Vertex {
            preset: HashSet::new(),
            posset: HashSet::new(),
            aliases: HashSet::new(),
        }
    }

    #[inline]
    pub fn is_parallel(&self, other: &Self) -> bool {
        (self.preset.is_empty() && other.preset.is_empty()
            || !self.preset.is_disjoint(&other.preset))
            && (self.posset.is_empty() && other.posset.is_empty()
                || !self.posset.is_disjoint(&other.posset))
    }
}

pub struct Graph<V: Hash + Eq + Clone> {
    nodes: Slab<Vertex<V>>,
    trunks: HashSet<VertexIndex>,
    leaves: HashSet<VertexIndex>,
    aliases: HashMap<V, HashSet<VertexIndex>>,
}

impl<V: Eq + Hash + Clone> Graph<V> {
    #[inline]
    pub fn new() -> Self {
        Graph {
            nodes: Slab::new(),
            trunks: HashSet::new(),
            leaves: HashSet::new(),
            aliases: HashMap::new(),
        }
    }

    #[inline]
    pub fn insert(&mut self, label: V) -> VertexIndex {
        let node = Vertex::new();
        let index = self.nodes.insert(node);
        self.trunks.insert(index);
        self.leaves.insert(index);
        self.append_label(index, label);
        index
    }

    fn remove_vertex_node(&mut self, vertex: VertexIndex) -> Vertex<V> {
        let node = self.nodes.get(vertex).unwrap();
        let posset: Vec<VertexIndex> = node.posset.iter().cloned().collect();
        let preset: Vec<VertexIndex> = node.posset.iter().cloned().collect();

        for dst in posset {
            self.disconnect((vertex, dst));
        }

        for src in preset {
            self.disconnect((src, vertex));
        }

        self.trunks.remove(&vertex);
        self.leaves.remove(&vertex);

        let node = self.nodes.remove(vertex);
        for id in node.aliases.iter() {
            let set = self.aliases.get_mut(id).unwrap();
            set.remove(&vertex);
            if set.is_empty() {
                self.aliases.remove(id);
            }
        }

        node
    }

    #[inline]
    pub fn remove(&mut self, vertex: VertexIndex) -> bool {
        if self.nodes.contains(vertex) {
            self.remove_vertex_node(vertex);
            true
        } else {
            false
        }
    }

    #[inline]
    pub fn posset<'a>(&'a self, vertex: VertexIndex) -> Option<VertexIter<'a>> {
        self.nodes
            .get(vertex)
            .map(|node| VertexIter::new(node.posset.iter()))
    }

    #[inline]
    pub fn preset<'a>(&'a self, vertex: VertexIndex) -> Option<VertexIter<'a>> {
        self.nodes
            .get(vertex)
            .map(|node| VertexIter::new(node.preset.iter()))
    }

    #[inline]
    pub fn indegree(&self, vertex: VertexIndex) -> Option<usize> {
        self.nodes.get(vertex).map(|node| node.preset.len())
    }

    #[inline]
    pub fn outdegree(&self, vertex: VertexIndex) -> Option<usize> {
        self.nodes.get(vertex).map(|node| node.posset.len())
    }

    #[inline]
    pub fn get<'a, 'b, W>(&'a self, label: &'b W) -> Option<VertexIter<'a>>
    where
        V: Borrow<W>,
        W: Eq + Hash + ?Sized,
    {
        self.aliases
            .get(label)
            .map(|set| VertexIter::new(set.iter()))
    }

    #[inline]
    pub fn labels<'a>(&'a self, vertex: VertexIndex) -> Option<LabelIter<'a, V>> {
        self.nodes
            .get(vertex)
            .map(|node| LabelIter::new(node.aliases.iter()))
    }

    #[inline]
    pub fn count_labeled<W: Borrow<V>>(&self, label: &W) -> Option<usize> {
        self.aliases.get(label.borrow()).map(|set| set.len())
    }

    #[inline]
    pub fn append_label(&mut self, vertex: VertexIndex, label: V) -> bool {
        let set = self.aliases.entry(label.clone()).or_default();

        match self.nodes.get_mut(vertex) {
            None => false,
            Some(node) => {
                node.aliases.insert(label.clone());
                set.insert(vertex);
                true
            }
        }
    }

    pub fn remove_vertex_label(&mut self, label: &V, vertex: VertexIndex) -> bool {
        let node = match self.nodes.get_mut(vertex) {
            None => return false,
            Some(node) => node,
        };
        node.aliases.remove(label);

        let set = match self.aliases.get_mut(label) {
            None => return false,
            Some(set) => set,
        };
        set.remove(&vertex);
        if set.len() == 0 {
            self.aliases.remove(label);
        }

        true
    }

    #[inline]
    pub fn connect(&mut self, src: VertexIndex, dst: VertexIndex) -> Option<EdgeIndex> {
        if !(self.nodes.contains(src) && self.nodes.contains(dst)) {
            return None;
        }

        self.nodes.get_mut(src).unwrap().posset.insert(dst);
        self.nodes.get_mut(dst).unwrap().preset.insert(src);
        self.trunks.remove(&dst);
        self.leaves.remove(&src);

        Some((src, dst))
    }

    pub fn disconnect(&mut self, edge: EdgeIndex) -> bool {
        let (src, dst) = edge;
        if !(self.nodes.contains(src) && self.nodes.contains(dst)) {
            return false;
        }

        let src_node = self.nodes.get_mut(src).unwrap();
        if !src_node.posset.remove(&dst) {
            return false;
        }
        if src_node.posset.is_empty() {
            self.leaves.insert(src);
        }

        let dst_node = self.nodes.get_mut(dst).unwrap();
        if !dst_node.preset.remove(&src) {
            return false;
        }
        if dst_node.preset.is_empty() {
            self.trunks.insert(dst);
        }

        true
    }

    #[inline]
    pub fn trunks<'a>(&'a self) -> VertexIter<'a> {
        VertexIter::new(self.trunks.iter())
    }

    #[inline]
    pub fn leaves<'a>(&'a self) -> VertexIter<'a> {
        VertexIter::new(self.leaves.iter())
    }

    pub fn merge_vertices<'a, I>(&mut self, vertices: I) -> VertexIndex
    where
        I: IntoIterator<Item = VertexIndex>,
    {
        let mut posset = HashSet::new();
        let mut preset = HashSet::new();
        let mut aliases = HashSet::new();
        let mut reflexive = false;

        for vertex in vertices {
            let node = self.nodes.remove(vertex);

            for id in node.posset {
                if id != vertex {
                    posset.insert(id);
                    let other = self.nodes.get_mut(id).unwrap();
                    other.preset.remove(&vertex);
                } else {
                    reflexive = true;
                }
            }
            for id in node.preset {
                if id != vertex {
                    preset.insert(id);
                    let other = self.nodes.get_mut(id).unwrap();
                    other.posset.remove(&vertex);
                } else {
                    reflexive = true;
                }
            }
            for alias in node.aliases {
                let set = self.aliases.get_mut(&alias).unwrap();
                set.remove(&vertex);
                aliases.insert(alias);
            }
        }

        let id = self.nodes.insert(Vertex::new());

        if reflexive {
            posset.insert(id);
            preset.insert(id);
        }

        if !posset.is_empty() {
            self.leaves.remove(&id);
            for &dst in posset.iter() {
                self.trunks.remove(&dst);
                self.nodes.get_mut(dst).unwrap().preset.insert(id);
            }
        };

        if !preset.is_empty() {
            self.trunks.remove(&id);
            for &src in preset.iter() {
                self.leaves.remove(&src);
                self.nodes.get_mut(src).unwrap().posset.insert(id);
            }
        };

        for label in aliases.iter() {
            self.aliases.entry(label.clone()).or_default().insert(id);
        }

        let node = self.nodes.get_mut(id).unwrap();
        node.posset = posset;
        node.preset = preset;
        node.aliases = aliases;

        id
    }

    #[inline]
    pub fn are_vertices_parallel(&self, one: VertexIndex, other: VertexIndex) -> Option<bool> {
        let one = self.nodes.get(one)?;
        let other = self.nodes.get(other)?;

        Some(one.is_parallel(other))
    }
}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn parallel_vertices() {
        let mut graph = Graph::new();
        let a = graph.insert("a");
        let b = graph.insert("b");
        let c = graph.insert("c");
        let d = graph.insert("d");
        let e = graph.insert("e");
        let f = graph.insert("f");
        let g = graph.insert("g");
        let h = graph.insert("h");
        let i = graph.insert("i");
        graph.connect(a, c);
        graph.connect(b, c);
        graph.connect(b, d);
        graph.connect(c, e);
        graph.connect(c, h);
        graph.connect(c, f);
        graph.connect(d, f);
        graph.connect(h, g);
        graph.connect(g, c);
        graph.connect(d, i);
        assert_eq!(graph.are_vertices_parallel(b, a), Some(true));
        assert_eq!(graph.are_vertices_parallel(a, b), Some(true));
        assert_eq!(graph.are_vertices_parallel(e, f), Some(true));
        assert_eq!(graph.are_vertices_parallel(f, e), Some(true));
        assert_eq!(graph.are_vertices_parallel(c, d), Some(true));
        assert_eq!(graph.are_vertices_parallel(d, c), Some(true));

        assert_eq!(graph.are_vertices_parallel(h, g), Some(false));
        assert_eq!(graph.are_vertices_parallel(g, h), Some(false));
        assert_eq!(graph.are_vertices_parallel(d, f), Some(false));
        assert_eq!(graph.are_vertices_parallel(f, d), Some(false));
        assert_eq!(graph.are_vertices_parallel(b, d), Some(false));
        assert_eq!(graph.are_vertices_parallel(d, b), Some(false));
        assert_eq!(graph.are_vertices_parallel(b, f), Some(false));
        assert_eq!(graph.are_vertices_parallel(f, b), Some(false));
        assert_eq!(graph.are_vertices_parallel(h, f), Some(false));
        assert_eq!(graph.are_vertices_parallel(f, h), Some(false));
        assert_eq!(graph.are_vertices_parallel(e, h), Some(false));
        assert_eq!(graph.are_vertices_parallel(h, f), Some(false));
        assert_eq!(graph.are_vertices_parallel(d, e), Some(false));
        assert_eq!(graph.are_vertices_parallel(e, d), Some(false));
        assert_eq!(graph.are_vertices_parallel(g, a), Some(false));
        assert_eq!(graph.are_vertices_parallel(a, g), Some(false));
        assert_eq!(graph.are_vertices_parallel(i, h), Some(false));
        assert_eq!(graph.are_vertices_parallel(h, i), Some(false));
    }

    #[test]
    fn merge_vertices() {
        let mut graph = Graph::new();
        let a = graph.insert("a");
        let b = graph.insert("b");
        let c = graph.insert("c");
        let d = graph.insert("d");
        let e = graph.insert("e");
        let f = graph.insert("f");
        let g = graph.insert("g");
        let h = graph.insert("h");
        graph.connect(a, c);
        graph.connect(b, c);
        graph.connect(b, d);
        graph.connect(c, e);
        graph.connect(c, h);
        graph.connect(c, f);
        graph.connect(d, f);
        graph.connect(h, g);
        graph.connect(g, c);

        let a_pos: HashSet<VertexIndex> = graph.posset(a).unwrap().collect();
        let a_pre: HashSet<VertexIndex> = graph.preset(a).unwrap().collect();
        let labeled_a: HashSet<VertexIndex> = graph.get("a").unwrap().collect();
        assert_eq!(a_pre, vec![].into_iter().collect());
        assert_eq!(a_pos, vec![c].into_iter().collect());
        assert_eq!(labeled_a, vec![a].into_iter().collect());

        let b_pos: HashSet<VertexIndex> = graph.posset(b).unwrap().collect();
        let b_pre: HashSet<VertexIndex> = graph.preset(b).unwrap().collect();
        let labeled_b: HashSet<VertexIndex> = graph.get("b").unwrap().collect();
        assert_eq!(b_pre, vec![].into_iter().collect());
        assert_eq!(b_pos, vec![c, d].into_iter().collect());
        assert_eq!(labeled_b, vec![b].into_iter().collect());

        let c_pos: HashSet<VertexIndex> = graph.posset(c).unwrap().collect();
        let c_pre: HashSet<VertexIndex> = graph.preset(c).unwrap().collect();
        let labeled_c: HashSet<VertexIndex> = graph.get("c").unwrap().collect();
        assert_eq!(c_pre, vec![g, a, b].into_iter().collect());
        assert_eq!(c_pos, vec![e, f, h].into_iter().collect());
        assert_eq!(labeled_c, vec![c].into_iter().collect());

        let d_pos: HashSet<VertexIndex> = graph.posset(d).unwrap().collect();
        let d_pre: HashSet<VertexIndex> = graph.preset(d).unwrap().collect();
        let labeled_d: HashSet<VertexIndex> = graph.get("d").unwrap().collect();
        assert_eq!(d_pre, vec![b].into_iter().collect());
        assert_eq!(d_pos, vec![f].into_iter().collect());
        assert_eq!(labeled_d, vec![d].into_iter().collect());

        let e_pos: HashSet<VertexIndex> = graph.posset(e).unwrap().collect();
        let e_pre: HashSet<VertexIndex> = graph.preset(e).unwrap().collect();
        let labeled_e: HashSet<VertexIndex> = graph.get("e").unwrap().collect();
        assert_eq!(e_pos, vec![].into_iter().collect());
        assert_eq!(e_pre, vec![c].into_iter().collect());
        assert_eq!(labeled_e, vec![e].into_iter().collect());

        let f_pos: HashSet<VertexIndex> = graph.posset(f).unwrap().collect();
        let f_pre: HashSet<VertexIndex> = graph.preset(f).unwrap().collect();
        let labeled_f: HashSet<VertexIndex> = graph.get("f").unwrap().collect();
        assert_eq!(f_pos, vec![].into_iter().collect());
        assert_eq!(f_pre, vec![c, d].into_iter().collect());
        assert_eq!(labeled_f, vec![f].into_iter().collect());

        let h_pos: HashSet<VertexIndex> = graph.posset(h).unwrap().collect();
        let h_pre: HashSet<VertexIndex> = graph.preset(h).unwrap().collect();
        let labeled_h: HashSet<VertexIndex> = graph.get("h").unwrap().collect();
        assert_eq!(h_pos, vec![g].into_iter().collect());
        assert_eq!(h_pre, vec![c].into_iter().collect());
        assert_eq!(labeled_h, vec![h].into_iter().collect());

        let g_pos: HashSet<VertexIndex> = graph.posset(g).unwrap().collect();
        let g_pre: HashSet<VertexIndex> = graph.preset(g).unwrap().collect();
        let labeled_g: HashSet<VertexIndex> = graph.get("g").unwrap().collect();
        assert_eq!(g_pos, vec![c].into_iter().collect());
        assert_eq!(g_pre, vec![h].into_iter().collect());
        assert_eq!(labeled_g, vec![g].into_iter().collect());

        let ab = graph.merge_vertices(vec![a, b]);

        let ab_pos: HashSet<VertexIndex> = graph.posset(ab).unwrap().collect();
        let ab_pre: HashSet<VertexIndex> = graph.preset(ab).unwrap().collect();
        let labeled_a: HashSet<VertexIndex> = graph.get("a").unwrap().collect();
        let labeled_b: HashSet<VertexIndex> = graph.get("b").unwrap().collect();
        assert_eq!(ab_pre, vec![].into_iter().collect());
        assert_eq!(ab_pos, vec![c, d].into_iter().collect());
        assert_eq!(labeled_a, vec![ab].into_iter().collect());
        assert_eq!(labeled_b, vec![ab].into_iter().collect());

        let c_pos: HashSet<VertexIndex> = graph.posset(c).unwrap().collect();
        let c_pre: HashSet<VertexIndex> = graph.preset(c).unwrap().collect();
        let labeled_c: HashSet<VertexIndex> = graph.get("c").unwrap().collect();
        assert_eq!(c_pre, vec![g, ab].into_iter().collect());
        assert_eq!(c_pos, vec![e, f, h].into_iter().collect());
        assert_eq!(labeled_c, vec![c].into_iter().collect());

        let d_pos: HashSet<VertexIndex> = graph.posset(d).unwrap().collect();
        let d_pre: HashSet<VertexIndex> = graph.preset(d).unwrap().collect();
        let labeled_d: HashSet<VertexIndex> = graph.get("d").unwrap().collect();
        assert_eq!(d_pre, vec![ab].into_iter().collect());
        assert_eq!(d_pos, vec![f].into_iter().collect());
        assert_eq!(labeled_d, vec![d].into_iter().collect());

        let e_pos: HashSet<VertexIndex> = graph.posset(e).unwrap().collect();
        let e_pre: HashSet<VertexIndex> = graph.preset(e).unwrap().collect();
        let labeled_e: HashSet<VertexIndex> = graph.get("e").unwrap().collect();
        assert_eq!(e_pos, vec![].into_iter().collect());
        assert_eq!(e_pre, vec![c].into_iter().collect());
        assert_eq!(labeled_e, vec![e].into_iter().collect());

        let f_pos: HashSet<VertexIndex> = graph.posset(f).unwrap().collect();
        let f_pre: HashSet<VertexIndex> = graph.preset(f).unwrap().collect();
        let labeled_f: HashSet<VertexIndex> = graph.get("f").unwrap().collect();
        assert_eq!(f_pos, vec![].into_iter().collect());
        assert_eq!(f_pre, vec![c, d].into_iter().collect());
        assert_eq!(labeled_f, vec![f].into_iter().collect());

        let h_pos: HashSet<VertexIndex> = graph.posset(h).unwrap().collect();
        let h_pre: HashSet<VertexIndex> = graph.preset(h).unwrap().collect();
        let labeled_h: HashSet<VertexIndex> = graph.get("h").unwrap().collect();
        assert_eq!(h_pos, vec![g].into_iter().collect());
        assert_eq!(h_pre, vec![c].into_iter().collect());
        assert_eq!(labeled_h, vec![h].into_iter().collect());

        let g_pos: HashSet<VertexIndex> = graph.posset(g).unwrap().collect();
        let g_pre: HashSet<VertexIndex> = graph.preset(g).unwrap().collect();
        let labeled_g: HashSet<VertexIndex> = graph.get("g").unwrap().collect();
        assert_eq!(g_pos, vec![c].into_iter().collect());
        assert_eq!(g_pre, vec![h].into_iter().collect());
        assert_eq!(labeled_g, vec![g].into_iter().collect());

        let cd = graph.merge_vertices(vec![c, d]);

        let ab_pos: HashSet<VertexIndex> = graph.posset(ab).unwrap().collect();
        let ab_pre: HashSet<VertexIndex> = graph.preset(ab).unwrap().collect();
        let labeled_a: HashSet<VertexIndex> = graph.get("a").unwrap().collect();
        let labeled_b: HashSet<VertexIndex> = graph.get("b").unwrap().collect();
        assert_eq!(ab_pre, vec![].into_iter().collect());
        assert_eq!(ab_pos, vec![cd].into_iter().collect());
        assert_eq!(labeled_a, vec![ab].into_iter().collect());
        assert_eq!(labeled_b, vec![ab].into_iter().collect());

        let cd_pos: HashSet<VertexIndex> = graph.posset(cd).unwrap().collect();
        let cd_pre: HashSet<VertexIndex> = graph.preset(cd).unwrap().collect();
        let labeled_c: HashSet<VertexIndex> = graph.get("c").unwrap().collect();
        let labeled_d: HashSet<VertexIndex> = graph.get("d").unwrap().collect();
        assert_eq!(cd_pre, vec![g, ab].into_iter().collect());
        assert_eq!(cd_pos, vec![e, f, h].into_iter().collect());
        assert_eq!(labeled_c, vec![cd].into_iter().collect());
        assert_eq!(labeled_d, vec![cd].into_iter().collect());

        let e_pos: HashSet<VertexIndex> = graph.posset(e).unwrap().collect();
        let e_pre: HashSet<VertexIndex> = graph.preset(e).unwrap().collect();
        let labeled_e: HashSet<VertexIndex> = graph.get("e").unwrap().collect();
        assert_eq!(e_pos, vec![].into_iter().collect());
        assert_eq!(e_pre, vec![cd].into_iter().collect());
        assert_eq!(labeled_e, vec![e].into_iter().collect());

        let f_pos: HashSet<VertexIndex> = graph.posset(f).unwrap().collect();
        let f_pre: HashSet<VertexIndex> = graph.preset(f).unwrap().collect();
        let labeled_f: HashSet<VertexIndex> = graph.get("f").unwrap().collect();
        assert_eq!(f_pos, vec![].into_iter().collect());
        assert_eq!(f_pre, vec![cd].into_iter().collect());
        assert_eq!(labeled_f, vec![f].into_iter().collect());

        let h_pos: HashSet<VertexIndex> = graph.posset(h).unwrap().collect();
        let h_pre: HashSet<VertexIndex> = graph.preset(h).unwrap().collect();
        let labeled_h: HashSet<VertexIndex> = graph.get("h").unwrap().collect();
        assert_eq!(h_pos, vec![g].into_iter().collect());
        assert_eq!(h_pre, vec![cd].into_iter().collect());
        assert_eq!(labeled_h, vec![h].into_iter().collect());

        let g_pos: HashSet<VertexIndex> = graph.posset(g).unwrap().collect();
        let g_pre: HashSet<VertexIndex> = graph.preset(g).unwrap().collect();
        let labeled_g: HashSet<VertexIndex> = graph.get("g").unwrap().collect();
        assert_eq!(g_pos, vec![cd].into_iter().collect());
        assert_eq!(g_pre, vec![h].into_iter().collect());
        assert_eq!(labeled_g, vec![g].into_iter().collect());

        let ef = graph.merge_vertices(vec![e, f]);

        let ab_pos: HashSet<VertexIndex> = graph.posset(ab).unwrap().collect();
        let ab_pre: HashSet<VertexIndex> = graph.preset(ab).unwrap().collect();
        let labeled_a: HashSet<VertexIndex> = graph.get("a").unwrap().collect();
        let labeled_b: HashSet<VertexIndex> = graph.get("b").unwrap().collect();
        assert_eq!(ab_pre, vec![].into_iter().collect());
        assert_eq!(ab_pos, vec![cd].into_iter().collect());
        assert_eq!(labeled_a, vec![ab].into_iter().collect());
        assert_eq!(labeled_b, vec![ab].into_iter().collect());

        let cd_pos: HashSet<VertexIndex> = graph.posset(cd).unwrap().collect();
        let cd_pre: HashSet<VertexIndex> = graph.preset(cd).unwrap().collect();
        let labeled_c: HashSet<VertexIndex> = graph.get("c").unwrap().collect();
        let labeled_d: HashSet<VertexIndex> = graph.get("d").unwrap().collect();
        assert_eq!(cd_pre, vec![g, ab].into_iter().collect());
        assert_eq!(cd_pos, vec![ef, h].into_iter().collect());
        assert_eq!(labeled_c, vec![cd].into_iter().collect());
        assert_eq!(labeled_d, vec![cd].into_iter().collect());

        let ef_pos: HashSet<VertexIndex> = graph.posset(ef).unwrap().collect();
        let ef_pre: HashSet<VertexIndex> = graph.preset(ef).unwrap().collect();
        let labeled_e: HashSet<VertexIndex> = graph.get("e").unwrap().collect();
        let labeled_f: HashSet<VertexIndex> = graph.get("f").unwrap().collect();
        assert_eq!(ef_pos, vec![].into_iter().collect());
        assert_eq!(ef_pre, vec![cd].into_iter().collect());
        assert_eq!(labeled_e, vec![ef].into_iter().collect());
        assert_eq!(labeled_f, vec![ef].into_iter().collect());

        let h_pos: HashSet<VertexIndex> = graph.posset(h).unwrap().collect();
        let h_pre: HashSet<VertexIndex> = graph.preset(h).unwrap().collect();
        let labeled_h: HashSet<VertexIndex> = graph.get("h").unwrap().collect();
        assert_eq!(h_pos, vec![g].into_iter().collect());
        assert_eq!(h_pre, vec![cd].into_iter().collect());
        assert_eq!(labeled_h, vec![h].into_iter().collect());

        let g_pos: HashSet<VertexIndex> = graph.posset(g).unwrap().collect();
        let g_pre: HashSet<VertexIndex> = graph.preset(g).unwrap().collect();
        let labeled_g: HashSet<VertexIndex> = graph.get("g").unwrap().collect();
        assert_eq!(g_pos, vec![cd].into_iter().collect());
        assert_eq!(g_pre, vec![h].into_iter().collect());
        assert_eq!(labeled_g, vec![g].into_iter().collect());
    }

    #[test]
    fn connected_vertices() {
        let mut graph = Graph::new();
        let a = graph.insert("a");
        let b = graph.insert("b");
        let c = graph.insert("c");
        let d = graph.insert("d");
        graph.connect(a, b);
        graph.connect(b, c);
        graph.connect(b, d);
        graph.connect(d, c);

        let a_pos: HashSet<VertexIndex> = graph.posset(a).unwrap().collect();
        let b_pos: HashSet<VertexIndex> = graph.posset(b).unwrap().collect();
        let c_pos: HashSet<VertexIndex> = graph.posset(c).unwrap().collect();
        let d_pos: HashSet<VertexIndex> = graph.posset(d).unwrap().collect();
        let a_pre: HashSet<VertexIndex> = graph.preset(a).unwrap().collect();
        let b_pre: HashSet<VertexIndex> = graph.preset(b).unwrap().collect();
        let c_pre: HashSet<VertexIndex> = graph.preset(c).unwrap().collect();
        let d_pre: HashSet<VertexIndex> = graph.preset(d).unwrap().collect();

        assert_eq!(a_pos, vec![b].into_iter().collect());
        assert_eq!(b_pos, vec![c, d].into_iter().collect());
        assert_eq!(c_pos, vec![].into_iter().collect());
        assert_eq!(d_pos, vec![c].into_iter().collect());
        assert_eq!(a_pre, vec![].into_iter().collect());
        assert_eq!(b_pre, vec![a].into_iter().collect());
        assert_eq!(c_pre, vec![b, d].into_iter().collect());
        assert_eq!(d_pre, vec![b].into_iter().collect());
    }
}