1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
//! Empirical cumulative distribution function.

pub struct Ecdf<T: Ord> {
    samples: Vec<T>,
    length: usize,
}

impl<T: Ord + Clone> Ecdf<T> {
    /// Construct a new representation of a cumulative distribution function for
    /// a given sample.
    ///
    /// The construction will involve computing a sorted clone of the given sample
    /// and may be inefficient or completely prohibitive for large samples. This
    /// computation is amortized significantly if there is heavy use of the value
    /// function.
    ///
    /// # Panics
    ///
    /// The sample set must be non-empty.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate kolmogorov_smirnov as ks;
    ///
    /// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
    /// let ecdf = ks::Ecdf::new(&samples);
    /// ```
    pub fn new(samples: &[T]) -> Ecdf<T> {
        let length = samples.len();
        assert!(length > 0);

        // Sort a copied sample for binary searching.
        let mut sorted = samples.to_vec();
        sorted.sort();

        Ecdf {
            samples: sorted,
            length: length,
        }
    }

    /// Calculate a value of the empirical cumulative distribution function for
    /// a given sample.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate kolmogorov_smirnov as ks;
    ///
    /// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
    /// let ecdf = ks::Ecdf::new(&samples);
    /// assert_eq!(ecdf.value(4), 0.5);
    /// ```
    pub fn value(&self, t: T) -> f64 {
        let num_samples_leq_t = match self.samples.binary_search(&t) {
            Ok(mut index) => {
                // At least one sample is a t and we have the index of it. Need
                // to walk down the sorted samples until at last that == t.
                while index + 1 < self.length && self.samples[index + 1] == t {
                    index += 1;
                }

                // Compensate for 0-based indexing.
                index + 1
            }
            Err(index) => {
                // No sample is a t but if we had to put one in it would go at
                // index. This means all indices to the left have samples < t
                // and should be counted in the cdf proportion. We must take one
                // from index to get the last included sample but then we just
                // have to add one again to account for 0-based indexing.
                index
            }
        };

        num_samples_leq_t as f64 / self.length as f64
    }

    /// Calculate a percentile for the sample using the Nearest Rank method.
    ///
    /// # Panics
    ///
    /// The percentile requested must be between 1 and 100 inclusive. In
    /// particular, there is no 0-percentile.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate kolmogorov_smirnov as ks;
    ///
    /// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
    /// let ecdf = ks::Ecdf::new(&samples);
    /// assert_eq!(ecdf.percentile(50), 4);
    /// ```
    pub fn percentile(&self, p: u8) -> T {
        assert!(0 < p && p <= 100);

        let rank = (p as f64 * self.length as f64 / 100.0).ceil() as usize;
        self.samples[rank - 1].clone()
    }

    /// Return the minimal element of the samples.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate kolmogorov_smirnov as ks;
    ///
    /// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
    /// let ecdf = ks::Ecdf::new(&samples);
    /// assert_eq!(ecdf.min(), 0);
    /// ```
    pub fn min(&self) -> T {
        self.samples[0].clone()
    }

    /// Return the maximal element of the samples.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate kolmogorov_smirnov as ks;
    ///
    /// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
    /// let ecdf = ks::Ecdf::new(&samples);
    /// assert_eq!(ecdf.max(), 9);
    /// ```
    pub fn max(&self) -> T {
        self.samples[self.samples.len() - 1].clone()
    }
}

/// Calculate a one-time value of the empirical cumulative distribution function
/// for a given sample.
///
/// Computational running time of this function is O(n) but does not amortize
/// across multiple calls like Ecdf<T>::value. This function should only be
/// used in the case that a small number of ECDF values are required for the
/// sample. Otherwise, Ecdf::new should be used to create a structure that
/// takes the upfront O(n log n) sort cost but calculates values in O(log n).
///
/// # Panics
///
/// The sample set must be non-empty.
///
/// # Examples
///
/// ```
/// extern crate kolmogorov_smirnov as ks;
///
/// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
/// let value = ks::ecdf(&samples, 4);
/// assert_eq!(value, 0.5);
/// ```
pub fn ecdf<T: Ord>(samples: &[T], t: T) -> f64 {
    let mut num_samples_leq_t = 0;
    let mut length = 0;

    for sample in samples.iter() {
        length += 1;
        if *sample <= t {
            num_samples_leq_t += 1;
        }
    }

    assert!(length > 0);

    num_samples_leq_t as f64 / length as f64
}

/// Calculate a one-time percentile for a given sample using the Nearest Rank
/// method and Quick Select.
///
/// Computational running time of this function is O(n) but does not amortize
/// across multiple calls like Ecdf<T>::percentile. This function should only be
/// used in the case that a small number of percentiles are required for the
/// sample. Otherwise, Ecdf::new should be used to create a structure that
/// takes the upfront O(n log n) sort cost but calculates percentiles in O(1).
///
/// # Panics
///
/// The sample set must be non-empty.
///
/// The percentile requested must be between 1 and 100 inclusive. In particular,
/// there is no 0-percentile.
///
/// # Examples
///
/// ```
/// extern crate kolmogorov_smirnov as ks;
///
/// let samples = vec!(9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
/// let percentile = ks::percentile(&samples, 50);
/// assert_eq!(percentile, 4);
/// ```
pub fn percentile<T: Ord + Clone>(samples: &[T], p: u8) -> T {
    assert!(0 < p && p <= 100);

    let length = samples.len();
    assert!(length > 0);

    let rank = (p as f64 * length as f64 / 100.0).ceil() as usize;

    // Quick Select the element at rank.

    let mut samples: Vec<T> = samples.to_vec();
    let mut low = 0;
    let mut high = length;

    loop {
        assert!(low < high);

        let pivot = samples[low].clone();

        if low >= high - 1 {
            return pivot;
        }

        // First determine if the rank item is less than the pivot.

        // Organise samples so that all items less than pivot are to the left,
        // `bottom` is the number of items less than pivot.

        let mut bottom = low;
        let mut top = high - 1;

        while bottom < top {
            while bottom < top && samples[bottom] < pivot {
                bottom += 1;
            }
            while bottom < top && samples[top] >= pivot {
                top -= 1;
            }

            if bottom < top {
                samples.swap(bottom, top);
            }
        }

        if rank <= bottom {
            // Rank item is less than pivot. Exclude pivot and larger items.
            high = bottom;
        } else {
            // Rank item is pivot or in the larger set. Exclude smaller items.
            low = bottom;

            // Next, determine if the pivot is the rank item.

            // Organise samples so that all items less than or equal to pivot
            // are to the left, `bottom` is the number of items less than or
            // equal to pivot. Since the left is already less than the pivot,
            // this just requires moving the pivots left also.

            let mut bottom = low;
            let mut top = high - 1;

            while bottom < top {
                while bottom < top && samples[bottom] == pivot {
                    bottom += 1;
                }
                while bottom < top && samples[top] != pivot {
                    top -= 1;
                }

                if bottom < top {
                    samples.swap(bottom, top);
                }
            }

            // Is pivot the rank item?

            if rank <= bottom {
                return pivot;
            }

            // Rank item is greater than pivot. Exclude pivot and smaller items.
            low = bottom;
        }
    }
}


#[cfg(test)]
mod tests {
    extern crate quickcheck;
    extern crate rand;

    use self::quickcheck::{Arbitrary, Gen, QuickCheck, Testable, TestResult, StdGen};
    use std::cmp;
    use std::usize;
    use super::{Ecdf, ecdf, percentile};

    fn check<A: Testable>(f: A) {
        let g = StdGen::new(rand::thread_rng(), usize::MAX);
        QuickCheck::new().gen(g).quickcheck(f);
    }

    /// Wrapper for generating sample data with QuickCheck.
    ///
    /// Samples must be non-empty sequences of u64 values.
    #[derive(Debug, Clone)]
    struct Samples {
        vec: Vec<u64>,
    }

    impl Arbitrary for Samples {
        fn arbitrary<G: Gen>(g: &mut G) -> Samples {
            // Limit size of generated sample set to 1024
            let max = cmp::min(g.size(), 1024);

            let size = g.gen_range(1, max);
            let vec = (0..size).map(|_| u64::arbitrary(g)).collect();

            Samples { vec: vec }
        }

        fn shrink(&self) -> Box<Iterator<Item = Samples>> {
            let vec: Vec<u64> = self.vec.clone();
            let shrunk: Box<Iterator<Item = Vec<u64>>> = vec.shrink();

            Box::new(shrunk.filter(|v| v.len() > 0).map(|v| Samples { vec: v }))
        }
    }

    /// Wrapper for generating percentile query value data with QuickCheck.
    ///
    /// Percentile must be u8 between 1 and 100 inclusive.
    #[derive(Debug, Clone)]
    struct Percentile {
        val: u8,
    }

    impl Arbitrary for Percentile {
        fn arbitrary<G: Gen>(g: &mut G) -> Percentile {
            let val = g.gen_range(1, 101) as u8;

            Percentile { val: val }
        }

        fn shrink(&self) -> Box<Iterator<Item = Percentile>> {
            let shrunk: Box<Iterator<Item = u8>> = self.val.shrink();

            Box::new(shrunk.filter(|&v| 0u8 < v && v <= 100u8).map(|v| Percentile { val: v }))
        }
    }

    #[test]
    #[should_panic(expected="assertion failed: length > 0")]
    fn single_use_ecdf_panics_on_empty_samples_set() {
        let xs: Vec<u64> = vec![];
        ecdf(&xs, 0);
    }

    #[test]
    #[should_panic(expected="assertion failed: length > 0")]
    fn multiple_use_ecdf_panics_on_empty_samples_set() {
        let xs: Vec<u64> = vec![];
        Ecdf::new(&xs);
    }

    #[test]
    fn single_use_ecdf_between_zero_and_one() {
        fn prop(xs: Samples, val: u64) -> bool {
            let actual = ecdf(&xs.vec, val);

            0.0 <= actual && actual <= 1.0
        }

        check(prop as fn(Samples, u64) -> bool);
    }

    #[test]
    fn multiple_use_ecdf_between_zero_and_one() {
        fn prop(xs: Samples, val: u64) -> bool {
            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.value(val);

            0.0 <= actual && actual <= 1.0
        }

        check(prop as fn(Samples, u64) -> bool);
    }

    #[test]
    fn single_use_ecdf_is_an_increasing_function() {
        fn prop(xs: Samples, val: u64) -> bool {
            let actual = ecdf(&xs.vec, val);

            ecdf(&xs.vec, val - 1) <= actual && actual <= ecdf(&xs.vec, val + 1)
        }

        check(prop as fn(Samples, u64) -> bool);
    }

    #[test]
    fn multiple_use_ecdf_is_an_increasing_function() {
        fn prop(xs: Samples, val: u64) -> bool {
            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.value(val);

            ecdf.value(val - 1) <= actual && actual <= ecdf.value(val + 1)
        }

        check(prop as fn(Samples, u64) -> bool);
    }

    #[test]
    fn single_use_ecdf_sample_min_minus_one_is_zero() {
        fn prop(xs: Samples) -> bool {
            let &min = xs.vec.iter().min().unwrap();

            ecdf(&xs.vec, min - 1) == 0.0
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn multiple_use_ecdf_sample_min_minus_one_is_zero() {
        fn prop(xs: Samples) -> bool {
            let &min = xs.vec.iter().min().unwrap();
            let ecdf = Ecdf::new(&xs.vec);

            ecdf.value(min - 1) == 0.0
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn single_use_ecdf_sample_max_is_one() {
        fn prop(xs: Samples) -> bool {
            let &max = xs.vec.iter().max().unwrap();

            ecdf(&xs.vec, max) == 1.0
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn multiple_use_ecdf_sample_max_is_one() {
        fn prop(xs: Samples) -> bool {
            let &max = xs.vec.iter().max().unwrap();
            let ecdf = Ecdf::new(&xs.vec);

            ecdf.value(max) == 1.0
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn single_use_ecdf_sample_val_is_num_samples_leq_val_div_length() {
        fn prop(xs: Samples) -> bool {
            let &val = xs.vec.first().unwrap();
            let num_samples = xs.vec
                                .iter()
                                .filter(|&&x| x <= val)
                                .count();
            let expected = num_samples as f64 / xs.vec.len() as f64;

            ecdf(&xs.vec, val) == expected
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn multiple_use_ecdf_sample_val_is_num_samples_leq_val_div_length() {
        fn prop(xs: Samples) -> bool {
            let &val = xs.vec.first().unwrap();
            let num_samples = xs.vec
                                .iter()
                                .filter(|&&x| x <= val)
                                .count();
            let expected = num_samples as f64 / xs.vec.len() as f64;

            let ecdf = Ecdf::new(&xs.vec);

            ecdf.value(val) == expected
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn single_use_ecdf_non_sample_val_is_num_samples_leq_val_div_length() {
        fn prop(xs: Samples, val: u64) -> TestResult {
            let length = xs.vec.len();

            if xs.vec.iter().any(|&x| x == val) {
                // Discard Vec containing val.
                return TestResult::discard();
            }

            let num_samples = xs.vec
                                .iter()
                                .filter(|&&x| x <= val)
                                .count();
            let expected = num_samples as f64 / length as f64;

            let actual = ecdf(&xs.vec, val);

            TestResult::from_bool(actual == expected)
        }

        check(prop as fn(Samples, u64) -> TestResult);
    }

    #[test]
    fn multiple_use_ecdf_non_sample_val_is_num_samples_leq_val_div_length() {
        fn prop(xs: Samples, val: u64) -> TestResult {
            let length = xs.vec.len();

            if xs.vec.iter().any(|&x| x == val) {
                // Discard Vec containing val.
                return TestResult::discard();
            }

            let num_samples = xs.vec
                                .iter()
                                .filter(|&&x| x <= val)
                                .count();
            let expected = num_samples as f64 / length as f64;

            let ecdf = Ecdf::new(&xs.vec);

            TestResult::from_bool(ecdf.value(val) == expected)
        }

        check(prop as fn(Samples, u64) -> TestResult);
    }

    #[test]
    fn single_and_multiple_use_ecdf_agree() {
        fn prop(xs: Samples, val: u64) -> bool {
            let multiple_use = Ecdf::new(&xs.vec);

            multiple_use.value(val) == ecdf(&xs.vec, val)
        }

        check(prop as fn(Samples, u64) -> bool);
    }

    #[test]
    #[should_panic(expected="assertion failed: 0 < p && p <= 100")]
    fn single_use_percentiles_panics_on_zero_percentile() {
        let xs: Vec<u64> = vec![0];

        percentile(&xs, 0);
    }

    #[test]
    #[should_panic(expected="assertion failed: 0 < p && p <= 100")]
    fn single_use_percentiles_panics_on_101_percentile() {
        let xs: Vec<u64> = vec![0];

        percentile(&xs, 101);
    }

    #[test]
    #[should_panic(expected="assertion failed: 0 < p && p <= 100")]
    fn multiple_use_percentiles_panics_on_zero_percentile() {
        let xs: Vec<u64> = vec![0];
        let ecdf = Ecdf::new(&xs);

        ecdf.percentile(0);
    }

    #[test]
    #[should_panic(expected="assertion failed: 0 < p && p <= 100")]
    fn multiple_use_percentiles_panics_on_101_percentile() {
        let xs: Vec<u64> = vec![0];
        let ecdf = Ecdf::new(&xs);

        ecdf.percentile(101);
    }

    #[test]
    fn single_use_percentile_between_samples_min_and_max() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let &min = xs.vec.iter().min().unwrap();
            let &max = xs.vec.iter().max().unwrap();

            let actual = percentile(&xs.vec, p.val);

            min <= actual && actual <= max
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn single_use_percentile_is_an_increasing_function() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let smaller = cmp::max(p.val - 1, 1);
            let larger = cmp::min(p.val + 1, 100);

            let actual = percentile(&xs.vec, p.val);

            percentile(&xs.vec, smaller) <= actual && actual <= percentile(&xs.vec, larger)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn single_use_percentile_100_is_sample_max() {
        fn prop(xs: Samples) -> bool {
            let &max = xs.vec.iter().max().unwrap();

            percentile(&xs.vec, 100) == max
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn multiple_use_percentile_between_samples_min_and_max() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let &min = xs.vec.iter().min().unwrap();
            let &max = xs.vec.iter().max().unwrap();

            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.percentile(p.val);

            min <= actual && actual <= max
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn multiple_use_percentile_is_an_increasing_function() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let smaller = cmp::max(p.val - 1, 1);
            let larger = cmp::min(p.val + 1, 100);

            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.percentile(p.val);

            ecdf.percentile(smaller) <= actual && actual <= ecdf.percentile(larger)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn multiple_use_percentile_100_is_sample_max() {
        fn prop(xs: Samples) -> bool {
            let &max = xs.vec.iter().max().unwrap();
            let ecdf = Ecdf::new(&xs.vec);

            ecdf.percentile(100) == max
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn single_use_ecdf_followed_by_single_use_percentile_is_leq_original_value() {
        fn prop(xs: Samples, val: u64) -> TestResult {
            let actual = ecdf(&xs.vec, val);

            let p = (actual * 100.0).floor() as u8;

            match p {
                0 => {
                    // val is below the first percentile threshold. Can't
                    // calculate 0-percentile value so discard.
                    TestResult::discard()
                }
                _ => {
                    // Not equal because e.g. all percentiles of [0] are 0. So
                    // value of 1 gives ecdf == 1.0 and percentile(100) == 0.
                    let single_use = percentile(&xs.vec, p);
                    TestResult::from_bool(single_use <= val)
                }
            }
        }

        check(prop as fn(Samples, u64) -> TestResult);
    }

    #[test]
    fn single_use_ecdf_followed_by_multiple_use_percentile_is_leq_original_value() {
        fn prop(xs: Samples, val: u64) -> TestResult {
            let actual = ecdf(&xs.vec, val);

            let p = (actual * 100.0).floor() as u8;

            match p {
                0 => {
                    // val is below the first percentile threshold. Can't
                    // calculate 0-percentile value so discard.
                    TestResult::discard()
                }
                _ => {
                    // Not equal because e.g. all percentiles of [0] are 0. So
                    // value of 1 gives ecdf == 1.0 and percentile(100) == 0.
                    let multiple_use = Ecdf::new(&xs.vec);
                    TestResult::from_bool(multiple_use.percentile(p) <= val)
                }
            }
        }

        check(prop as fn(Samples, u64) -> TestResult);
    }

    #[test]
    fn multiple_use_ecdf_followed_by_single_use_percentile_is_leq_original_value() {
        fn prop(xs: Samples, val: u64) -> TestResult {
            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.value(val);

            let p = (actual * 100.0).floor() as u8;

            match p {
                0 => {
                    // val is below the first percentile threshold. Can't
                    // calculate 0-percentile value so discard.
                    TestResult::discard()
                }
                _ => {
                    // Not equal because e.g. all percentiles of [0] are 0. So
                    // value of 1 gives ecdf == 1.0 and percentile(100) == 0.
                    let single_use = percentile(&xs.vec, p);
                    TestResult::from_bool(single_use <= val)
                }
            }
        }

        check(prop as fn(Samples, u64) -> TestResult);
    }

    #[test]
    fn multiple_use_ecdf_followed_by_multiple_use_percentile_is_leq_original_value() {
        fn prop(xs: Samples, val: u64) -> TestResult {
            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.value(val);

            let p = (actual * 100.0).floor() as u8;

            match p {
                0 => {
                    // val is below the first percentile threshold. Can't
                    // calculate 0-percentile value so discard.
                    TestResult::discard()
                }
                _ => {
                    // Not equal because e.g. all percentiles of [0] are 0. So
                    // value of 1 gives ecdf == 1.0 and percentile(100) == 0.
                    TestResult::from_bool(ecdf.percentile(p) <= val)
                }
            }
        }

        check(prop as fn(Samples, u64) -> TestResult);
    }

    #[test]
    fn single_use_percentile_followed_by_single_use_edf_is_geq_original_value() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let actual = percentile(&xs.vec, p.val);

            // Not equal because e.g. 1- through 50-percentiles of [0, 1] are 0.
            // So original value of 1 gives percentile == 0 and ecdf(0) == 0.5.
            p.val as f64 / 100.0 <= ecdf(&xs.vec, actual)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn single_use_percentile_followed_by_multiple_use_edf_is_geq_original_value() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let actual = percentile(&xs.vec, p.val);

            let ecdf = Ecdf::new(&xs.vec);

            // Not equal because e.g. 1- through 50-percentiles of [0, 1] are 0.
            // So original value of 1 gives percentile == 0 and ecdf(0) == 0.5.
            p.val as f64 / 100.0 <= ecdf.value(actual)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn multiple_use_percentile_followed_by_single_use_edf_is_geq_original_value() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let multiple_use = Ecdf::new(&xs.vec);
            let actual = multiple_use.percentile(p.val);

            // Not equal because e.g. 1- through 50-percentiles of [0, 1] are 0.
            // So original value of 1 gives percentile == 0 and ecdf(0) == 0.5.
            p.val as f64 / 100.0 <= ecdf(&xs.vec, actual)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn multiple_use_percentile_followed_by_multiple_use_edf_is_geq_original_value() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let ecdf = Ecdf::new(&xs.vec);
            let actual = ecdf.percentile(p.val);

            // Not equal because e.g. 1- through 50-percentiles of [0, 1] are 0.
            // So original value of 1 gives percentile == 0 and ecdf(0) == 0.5.
            p.val as f64 / 100.0 <= ecdf.value(actual)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn single_and_multiple_use_percentile_agree() {
        fn prop(xs: Samples, p: Percentile) -> bool {
            let multiple_use = Ecdf::new(&xs.vec);

            multiple_use.percentile(p.val) == percentile(&xs.vec, p.val)
        }

        check(prop as fn(Samples, Percentile) -> bool);
    }

    #[test]
    fn min_is_leq_all_samples() {
        fn prop(xs: Samples) -> bool {
            let multiple_use = Ecdf::new(&xs.vec);
            let actual = multiple_use.min();

            xs.vec.iter().all(|&x| actual <= x)
        }

        check(prop as fn(Samples) -> bool);
    }

    #[test]
    fn max_is_geq_all_samples() {
        fn prop(xs: Samples) -> bool {
            let multiple_use = Ecdf::new(&xs.vec);
            let actual = multiple_use.max();

            xs.vec.iter().all(|&x| actual >= x)
        }

        check(prop as fn(Samples) -> bool);
    }
}