1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
use crate::arrayadapter::ArrayAdapter;
use crate::util::*;
use core::ops::AddAssign;
use num_traits::{Signed, Zero};
use std::convert::From;

/// Run the FasterPAM algorithm.
///
/// If used multiple times, it is better to additionally shuffle the input data,
/// to increase randomness of the solutions found and hence increase the chance
/// of finding a better solution.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `i64` or `f64` for the loss (must be signed)
/// * `mat` - a pairwise distance matrix
/// * `med` - the list of medoids
/// * `maxiter` - the maximum number of iterations allowed
///
/// returns a tuple containing:
/// * the final loss
/// * the final cluster assignment
/// * the number of iterations needed
/// * the number of swaps performed
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
/// * panics when k is 0 or larger than N
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let mut meds = kmedoids::random_initialization(4, 2, &mut rand::thread_rng());
/// let (loss, assi, n_iter, n_swap): (f64, _, _, _) = kmedoids::fasterpam(&data, &mut meds, 100);
/// println!("Loss is: {}", loss);
/// ```
pub fn fasterpam<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	maxiter: usize,
) -> (L, Vec<usize>, usize, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let (n, k) = (mat.len(), med.len());
	if k == 1 {
		let assi = vec![0; n];
		let (swapped, loss) = choose_medoid_within_partition::<M, N, L>(mat, &assi, med, 0);
		return (loss, assi, 1, if swapped { 1 } else { 0 });
	}
	let (mut loss, mut data) = initial_assignment(mat, med);
	debug_assert_assignment(mat, med, &data);
	let mut removal_loss = vec![L::zero(); k];
	update_removal_loss(&data, &mut removal_loss);
	let (mut lastswap, mut n_swaps, mut iter) = (n, 0, 0);
	while iter < maxiter {
		iter += 1;
		let (swaps_before, lastloss) = (n_swaps, loss);
		for j in 0..n {
			if j == lastswap {
				break;
			}
			if j == med[data[j].near.i as usize] {
				continue; // This already is a medoid
			}
			let (change, b) = find_best_swap(mat, &removal_loss, &data, j);
			if change >= L::zero() {
				continue; // No improvement
			}
			n_swaps += 1;
			lastswap = j;
			// perform the swap
			loss = do_swap(mat, med, &mut data, b, j);
			update_removal_loss(&data, &mut removal_loss);
		}
		if n_swaps == swaps_before || loss >= lastloss {
			break; // converged
		}
	}
	let assi = data.iter().map(|x| x.near.i as usize).collect();
	(loss, assi, iter, n_swaps)
}

/// Run the FasterPAM algorithm with additional randomization.
///
/// This increases the chance of finding a better solution when used multiple times,
/// as it decreases the dependency on the input data order.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `i64` or `f64` for the loss (must be signed)
/// * `mat` - a pairwise distance matrix
/// * `med` - the list of medoids
/// * `maxiter` - the maximum number of iterations allowed
/// * `rng` - random number generator for shuffling the input data
///
/// returns a tuple containing:
/// * the final loss
/// * the final cluster assignment
/// * the number of iterations needed
/// * the number of swaps performed
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
/// * panics when k is 0 or larger than N
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let mut meds = kmedoids::random_initialization(4, 2, &mut rand::thread_rng());
/// let (loss, assi, n_iter, n_swap): (f64, _, _, _) = kmedoids::rand_fasterpam(&data, &mut meds, 100, &mut rand::thread_rng());
/// println!("Loss is: {}", loss);
/// ```
#[cfg(feature = "rand")]
pub fn rand_fasterpam<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	maxiter: usize,
	rng: &mut impl rand::Rng,
) -> (L, Vec<usize>, usize, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let (n, k) = (mat.len(), med.len());
	if k == 1 {
		let assi = vec![0; n];
		let (swapped, loss) = choose_medoid_within_partition::<M, N, L>(mat, &assi, med, 0);
		return (loss, assi, 1, if swapped { 1 } else { 0 });
	}
	let (mut loss, mut data) = initial_assignment(mat, med);
	debug_assert_assignment(mat, med, &data);

	let mut removal_loss = vec![L::zero(); k];
	update_removal_loss(&data, &mut removal_loss);
	let (mut lastswap, mut n_swaps, mut iter) = (n, 0, 0);
	let seq = rand::seq::index::sample(rng, n, n); // random shuffling
	while iter < maxiter {
		iter += 1;
		let (swaps_before, lastloss) = (n_swaps, loss);
		for j in seq.iter() {
			if j == lastswap {
				break;
			}
			if j == med[data[j].near.i as usize] {
				continue; // This already is a medoid
			}
			let (change, b) = find_best_swap(mat, &removal_loss, &data, j);
			if change >= L::zero() {
				continue; // No improvement
			}
			n_swaps += 1;
			lastswap = j;
			// perform the swap
			loss = do_swap(mat, med, &mut data, b, j);
			update_removal_loss(&data, &mut removal_loss);
		}
		if n_swaps == swaps_before || loss >= lastloss {
			break; // converged
		}
	}
	let assi = data.iter().map(|x| x.near.i as usize).collect();
	(loss, assi, iter, n_swaps)
}

/// Perform the initial assignment to medoids
#[inline]
pub(crate) fn initial_assignment<M, N, L>(mat: &M, med: &[usize]) -> (L, Vec<Rec<N>>)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let (n, k) = (mat.len(), med.len());
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	assert!(n <= u32::MAX as usize, "N is too large");
	assert!(k > 0 && k < u32::MAX as usize, "invalid N");
	assert!(k <= n, "k must be at most N");
	let mut data = vec![Rec::<N>::empty(); mat.len()];

	let firstcenter = med[0];
	let loss = data
		.iter_mut()
		.enumerate()
		.map(|(i, cur)| {
			*cur = Rec::new(0, mat.get(i, firstcenter), u32::MAX, N::zero());
			for (m, &me) in med.iter().enumerate().skip(1) {
				let d = mat.get(i, me);
				if d < cur.near.d || i == me {
					cur.seco = cur.near;
					cur.near = DistancePair { i: m as u32, d };
				} else if cur.seco.i == u32::MAX || d < cur.seco.d {
					cur.seco = DistancePair { i: m as u32, d };
				}
			}
			L::from(cur.near.d)
		})
		.reduce(L::add)
		.unwrap();
	(loss, data)
}

/// Find the best swap for object j - FastPAM version
#[inline]
pub(crate) fn find_best_swap<M, N, L>(
	mat: &M,
	removal_loss: &[L],
	data: &[Rec<N>],
	j: usize,
) -> (L, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let mut ploss = removal_loss.to_vec();
	// Improvement from the journal version:
	let mut acc = L::zero();
	for (o, reco) in data.iter().enumerate() {
		let doj = mat.get(o, j);
		// New medoid is closest:
		if doj < reco.near.d {
			acc += L::from(doj) - L::from(reco.near.d);
			// loss already includes ds - dn, remove
			ploss[reco.near.i as usize] += L::from(reco.near.d) - L::from(reco.seco.d);
		} else if doj < reco.seco.d {
			// loss already includes ds - dn, adjust to d(xo) - dn
			ploss[reco.near.i as usize] += L::from(doj) - L::from(reco.seco.d);
		}
	}
	let (b, bloss) = find_min(&mut ploss.iter());
	(bloss + acc, b) // add the shared accumulator
}

/// Update the loss when removing each medoid
pub(crate) fn update_removal_loss<N, L>(data: &[Rec<N>], loss: &mut Vec<L>)
where
	N: Zero + Copy,
	L: AddAssign + Signed + Copy + Zero + From<N>,
{
	loss.fill(L::zero()); // stable since 1.50
	for rec in data.iter() {
		loss[rec.near.i as usize] += L::from(rec.seco.d) - L::from(rec.near.d);
		// as N might be unsigned
	}
}

/// Update the second nearest medoid information
/// Called after each swap.
#[inline]
pub(crate) fn update_second_nearest<M, N>(
	mat: &M,
	med: &[usize],
	n: usize,
	b: usize,
	o: usize,
	doj: N,
) -> DistancePair<N>
where
	N: PartialOrd + Copy,
	M: ArrayAdapter<N>,
{
	let mut s = DistancePair::new(b as u32, doj);
	for (i, &mi) in med.iter().enumerate() {
		if i == n || i == b {
			continue;
		}
		let d = mat.get(o, mi);
		if d < s.d {
			s = DistancePair::new(i as u32, d);
		}
	}
	s
}

/// Perform a single swap
#[inline]
pub(crate) fn do_swap<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	data: &mut Vec<Rec<N>>,
	b: usize,
	j: usize,
) -> L
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let n = mat.len();
	assert!(b < med.len(), "invalid medoid number");
	assert!(j < n, "invalid object number");
	med[b] = j;
	data.iter_mut()
		.enumerate()
		.map(|(o, reco)| {
			if o == j {
				if reco.near.i != b as u32 {
					reco.seco = reco.near;
				}
				reco.near = DistancePair::new(b as u32, N::zero());
				return L::zero();
			}
			let doj = mat.get(o, j);
			// Nearest medoid is gone:
			if reco.near.i == b as u32 {
				if doj < reco.seco.d {
					reco.near = DistancePair::new(b as u32, doj);
				} else {
					reco.near = reco.seco;
					reco.seco = update_second_nearest(mat, med, reco.near.i as usize, b, o, doj);
				}
			} else {
				// nearest not removed
				if doj < reco.near.d {
					reco.seco = reco.near;
					reco.near = DistancePair::new(b as u32, doj);
				} else if doj < reco.seco.d {
					reco.seco = DistancePair::new(b as u32, doj);
				} else if reco.seco.i == b as u32 {
					// second nearest was replaced
					reco.seco = update_second_nearest(mat, med, reco.near.i as usize, b, o, doj);
				}
			}
			L::from(reco.near.d)
		})
		.reduce(L::add)
		.unwrap()
}

#[cfg(test)]
mod tests {
	// TODO: use a larger, much more interesting example.
	use crate::{arrayadapter::LowerTriangle, fasterpam, silhouette, util::assert_array};

	#[test]
	fn testfasterpam_simple() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let mut meds = vec![0, 1];
		let (loss, assi, n_iter, n_swap): (i64, _, _, _) = fasterpam(&data, &mut meds, 10);
		let (sil, _): (f64, _) = silhouette(&data, &assi, false);
		assert_eq!(loss, 4, "loss not as expected");
		assert_eq!(n_swap, 2, "swaps not as expected");
		assert_eq!(n_iter, 2, "iterations not as expected");
		assert_array(assi, vec![0, 0, 0, 1, 1], "assignment not as expected");
		assert_array(meds, vec![0, 3], "medoids not as expected");
		assert_eq!(sil, 0.7522494172494172, "Silhouette not as expected");
	}

	#[test]
	fn testfasterpam_single_cluster() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let mut meds = vec![1]; // So we need one swap
		let (loss, assi, n_iter, n_swap): (i64, _, _, _) = fasterpam(&data, &mut meds, 10);
		let (sil, _): (f64, _) = silhouette(&data, &assi, false);
		assert_eq!(loss, 14, "loss not as expected");
		assert_eq!(n_swap, 1, "swaps not as expected");
		assert_eq!(n_iter, 1, "iterations not as expected");
		assert_array(assi, vec![0, 0, 0, 0, 0], "assignment not as expected");
		assert_array(meds, vec![0], "medoids not as expected");
		assert_eq!(sil, 0., "Silhouette not as expected");
	}

	#[cfg(feature = "rand")]
	use crate::rand_fasterpam;
	#[cfg(feature = "rand")]
	use rand::{rngs::StdRng, SeedableRng};
	#[cfg(feature = "rand")]
	#[test]
	fn testrand_fasterpam() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let mut meds = vec![0, 1];
		let mut rng = StdRng::seed_from_u64(1);
		let (loss, assi, n_iter, n_swap): (i64, _, _, _) =
			rand_fasterpam(&data, &mut meds, 10, &mut rng);
		let (sil, _): (f64, _) = silhouette(&data, &assi, false);
		assert_eq!(loss, 4, "loss not as expected");
		assert_eq!(n_swap, 1, "swaps not as expected");
		assert_eq!(n_iter, 2, "iterations not as expected");
		assert_array(assi, vec![0, 0, 0, 1, 1], "assignment not as expected");
		assert_array(meds, vec![0, 4], "medoids not as expected");
		assert_eq!(sil, 0.7522494172494172, "Silhouette not as expected");
	}
}