1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
use crate::arrayadapter::ArrayAdapter;
use crate::fasterpam::{do_swap, initial_assignment};
use crate::util::*;
use core::ops::AddAssign;
use num_traits::{Signed, Zero};
use std::convert::From;

/// Run the original PAM SWAP algorithm (no BUILD, but given initial medoids).
///
/// This is provided for academic reasons to see the performance difference.
/// Quality-wise, FasterPAM is not worse on average, but much faster.
/// FastPAM1 is supposed to do the same swaps, and find the same result, but faster.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `i64` or `f64` for the loss (must be signed)
/// * `mat` - a pairwise distance matrix
/// * `med` - the list of medoids
/// * `maxiter` - the maximum number of iterations allowed
///
/// returns a tuple containing:
/// * the final loss
/// * the final cluster assignment
/// * the number of iterations needed
/// * the number of swaps performed
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
/// * panics when k is 0 or larger than N
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let mut meds = kmedoids::random_initialization(4, 2, &mut rand::thread_rng());
/// let (loss, assi, n_iter, n_swap): (f64, _, _, _) = kmedoids::pam_swap(&data, &mut meds, 100);
/// println!("Loss is: {}", loss);
/// ```
pub fn pam_swap<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	maxiter: usize,
) -> (L, Vec<usize>, usize, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let (loss, mut data) = initial_assignment(mat, med);
	pam_optimize(mat, med, &mut data, maxiter, loss)
}

/// Run the original PAM BUILD algorithm.
///
/// This is provided for academic reasons to see the performance difference.
/// Quality-wise, FasterPAM yields better results than just BUILD.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `i64` or `f64` for the loss (must be signed)
/// * `mat` - a pairwise distance matrix
/// * `k` - the number of medoids to pick
///
/// returns a tuple containing:
/// * the initial loss
/// * the initial cluster assignment
/// * the initial medoids
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
/// * panics when k is 0 or larger than N
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let (loss, assi, meds): (f64, _, _) = kmedoids::pam_build(&data, 2);
/// println!("Loss is: {}", loss);
/// ```
pub fn pam_build<M, N, L>(mat: &M, k: usize) -> (L, Vec<usize>, Vec<usize>)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let n = mat.len();
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	assert!(n <= u32::MAX as usize, "N is too large");
	assert!(k > 0 && k < u32::MAX as usize, "invalid N");
	assert!(k <= n, "k must be at most N");
	let mut meds = Vec::<usize>::with_capacity(k);
	let mut data = Vec::<Rec<N>>::with_capacity(n);
	let loss = pam_build_initialize(mat, &mut meds, &mut data, k);
	let assi = data.iter().map(|x| x.near.i as usize).collect();
	(loss, assi, meds)
}

/// Run the original PAM algorithm (BUILD and SWAP).
///
/// This is provided for academic reasons to see the performance difference.
/// Quality-wise, FasterPAM is comparable to PAM, and much faster.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `i64` or `f64` for the loss (must be signed)
/// * `mat` - a pairwise distance matrix
/// * `k` - the number of medoids to pick
/// * `maxiter` - the maximum number of iterations allowed
///
/// returns a tuple containing:
/// * the final loss
/// * the final cluster assignment
/// * the final medoids
/// * the number of iterations needed
/// * the number of swaps performed
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
/// * panics when k is 0 or larger than N
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let (loss, assi, meds, n_iter, n_swap): (f64, _, _, _, _) = kmedoids::pam(&data, 2, 100);
/// println!("Loss is: {}", loss);
/// ```
pub fn pam<M, N, L>(mat: &M, k: usize, maxiter: usize) -> (L, Vec<usize>, Vec<usize>, usize, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let n = mat.len();
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	assert!(n <= u32::MAX as usize, "N is too large");
	assert!(k > 0 && k < u32::MAX as usize, "invalid N");
	assert!(k <= n, "k must be at most N");
	let mut meds = Vec::<usize>::with_capacity(k);
	let mut data = Vec::<Rec<N>>::with_capacity(n);
	let loss = pam_build_initialize(mat, &mut meds, &mut data, k);
	let (nloss, assi, n_iter, n_swap) = pam_optimize(mat, &mut meds, &mut data, maxiter, loss);
	(nloss, assi, meds, n_iter, n_swap) // also return medoids
}

/// Main optimization function of PAM, not exposed (use pam_swap or pam)
fn pam_optimize<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	data: &mut Vec<Rec<N>>,
	maxiter: usize,
	mut loss: L,
) -> (L, Vec<usize>, usize, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let (n, k) = (mat.len(), med.len());
	if k == 1 {
		let assi = vec![0; n];
		let (swapped, loss) = choose_medoid_within_partition::<M, N, L>(mat, &assi, med, 0);
		return (loss, assi, 1, if swapped { 1 } else { 0 });
	}
	debug_assert_assignment(mat, med, data);
	let (mut n_swaps, mut iter) = (0, 0);
	while iter < maxiter {
		iter += 1;
		let mut best = (L::zero(), k, usize::MAX);
		for j in 0..n {
			if j == med[data[j].near.i as usize] {
				continue; // This already is a medoid
			}
			let (change, b) = find_best_swap_pam(mat, med, data, j);
			if change >= best.0 {
				continue; // No improvement
			}
			best = (change, b, j);
		}
		if best.0 < L::zero() {
			n_swaps += 1;
			// perform the swap
			let newloss = do_swap(mat, med, data, best.1, best.2);
			if newloss >= loss {
				break; // Probably numerically unstable now.
			}
			loss = newloss;
		} else {
			break; // No improvement, or NaN.
		}
	}
	let assi = data.iter().map(|x| x.near.i as usize).collect();
	(loss, assi, iter, n_swaps)
}

/// Find the best swap for object j - slower PAM version
#[inline]
fn find_best_swap_pam<M, N, L>(mat: &M, med: &[usize], data: &[Rec<N>], j: usize) -> (L, usize)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let recj = &data[j];
	let mut best = (L::zero(), usize::MAX);
	for (m, _) in med.iter().enumerate() {
		let mut acc: L = -L::from(recj.near.d); // j becomes medoid
		for (o, reco) in data.iter().enumerate() {
			if o == j {
				continue;
			}
			let doj = mat.get(o, j);
			// Current medoid is being replaced:
			if reco.near.i as usize == m {
				if doj < reco.seco.d {
					// Assign to new medoid:
					acc += L::from(doj) - L::from(reco.near.d)
				} else {
					// Assign to second nearest instead:
					acc += L::from(reco.seco.d) - L::from(reco.near.d)
				}
			} else if doj < reco.near.d {
				// new mediod is closer:
				acc += L::from(doj) - L::from(reco.near.d)
			} // else no change
		}
		if acc < best.0 {
			best = (acc, m);
		}
	}
	best
}

/// Not exposed. Use pam_build or pam.
pub(crate) fn pam_build_initialize<M, N, L>(
	mat: &M,
	meds: &mut Vec<usize>,
	data: &mut Vec<Rec<N>>,
	k: usize,
) -> L
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N>,
	M: ArrayAdapter<N>,
{
	let n = mat.len();
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	// choose first medoid
	let mut best = (L::zero(), k);
	for i in 0..n {
		let mut sum = L::zero();
		for j in 0..n {
			if j != i {
				sum += L::from(mat.get(j, i));
			}
		}
		if i == 0 || sum < best.0 {
			best = (sum, i);
		}
	}
	let mut loss = best.0;
	meds.push(best.1);
	for j in 0..n {
		data.push(Rec::new(0, mat.get(j, best.1), u32::MAX, N::zero()));
	}
	// choose remaining medoids
	for l in 1..k {
		best = (L::zero(), k);
		for (i, _) in data.iter().enumerate() {
			let mut sum = -L::from(data[i].near.d);
			for (j, dj) in data.iter().enumerate() {
				if j != i {
					let d = mat.get(j, i);
					if d < dj.near.d {
						sum += L::from(d) - L::from(dj.near.d)
					}
				}
			}
			if i == 0 || sum < best.0 {
				best = (sum, i);
			}
		}
		if best.0 >= L::zero() { break; } // No further improvements - duplicates etc.
		// Update assignments:
		loss = L::zero();
		for (j, recj) in data.iter_mut().enumerate() {
			if j == best.1 {
				recj.seco = recj.near;
				recj.near = DistancePair::new(l as u32, N::zero());
				continue;
			}
			let dj = mat.get(j, best.1);
			if dj < recj.near.d {
				recj.seco = recj.near;
				recj.near = DistancePair::new(l as u32, dj);
			} else if recj.seco.i == u32::MAX || dj < recj.seco.d {
				recj.seco = DistancePair::new(l as u32, dj);
			}
			loss += L::from(recj.near.d);
		}
		meds.push(best.1);
	}
	loss
}

#[cfg(test)]
mod tests {
	// TODO: use a larger, much more interesting example.
	use crate::{
		arrayadapter::LowerTriangle, pam, pam_build, pam_swap, silhouette, util::assert_array,
	};

	#[test]
	fn test_pam_swap_simple() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let mut meds = vec![0, 1];
		let (loss, assi, n_iter, n_swap): (i64, _, _, _) = pam_swap(&data, &mut meds, 10);
		let (sil, _): (f64, _) = silhouette(&data, &assi, false);
		assert_eq!(loss, 4, "loss not as expected");
		assert_eq!(n_swap, 1, "swaps not as expected");
		assert_eq!(n_iter, 2, "iterations not as expected");
		assert_array(assi, vec![0, 0, 0, 1, 1], "assignment not as expected");
		assert_array(meds, vec![0, 3], "medoids not as expected");
		assert_eq!(sil, 0.7522494172494172, "Silhouette not as expected");
	}

	#[test]
	fn test_pam_build_simple() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let (loss, assi, meds): (i64, _, _) = pam_build(&data, 2);
		let (sil, _): (f64, _) = silhouette(&data, &assi, false);
		assert_eq!(loss, 4, "loss not as expected");
		assert_array(assi, vec![0, 0, 0, 1, 1], "assignment not as expected");
		assert_array(meds, vec![0, 3], "medoids not as expected");
		assert_eq!(sil, 0.7522494172494172, "Silhouette not as expected");
	}

	#[test]
	fn test_pam_simple() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let (loss, assi, meds, n_iter, n_swap): (i64, _, _, _, _) = pam(&data, 2, 10);
		let (sil, _): (f64, _) = silhouette(&data, &assi, false);
		// no swaps, because BUILD does a decent job
		assert_eq!(n_swap, 0, "swaps not as expected");
		assert_eq!(n_iter, 1, "iterations not as expected");
		assert_eq!(loss, 4, "loss not as expected");
		assert_array(assi, vec![0, 0, 0, 1, 1], "assignment not as expected");
		assert_array(meds, vec![0, 3], "medoids not as expected");
		assert_eq!(sil, 0.7522494172494172, "Silhouette not as expected");
	}
}