1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#[cfg(feature = "parallel")]
use crate::arrayadapter::ArrayAdapter;
use crate::fasterpam::{update_removal_loss, update_second_nearest};
use crate::util::*;
use core::ops::AddAssign;
use ndarray::Array;
use num_traits::{Signed, Zero};
use rayon::prelude::*;
use std::convert::From;
use std::sync::{Arc, Mutex};

/// Run the FasterPAM algorithm (parallel version).
///
/// For small data sets (n<1000) it is usually faster to use the non-parallel version.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `i64` or `f64` for the loss (must be signed)
/// * `mat` - a pairwise distance matrix
/// * `med` - the list of medoids
/// * `maxiter` - the maximum number of iterations allowed
/// * `rng` - random number generator for shuffling the input data
///
/// returns a tuple containing:
/// * the final loss
/// * the final cluster assignment
/// * the number of iterations needed
/// * the number of swaps performed
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
/// * panics when k is 0 or larger than N
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let mut meds = kmedoids::random_initialization(4, 2, &mut rand::thread_rng());
/// let (loss, assi, n_iter, n_swap): (f64, _, _, _) = kmedoids::par_fasterpam(&data, &mut meds, 100, &mut rand::thread_rng());
/// println!("Loss is: {}", loss);
/// ```
pub fn par_fasterpam<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	maxiter: usize,
	rng: &mut impl rand::Rng,
) -> (L, Vec<usize>, usize, usize)
where
	N: Zero + PartialOrd + Copy + Sync + Send,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N> + Sync + Send,
	M: ArrayAdapter<N> + Sync + Send,
{
	let (n, k) = (mat.len(), med.len());
	if k == 1 {
		let assi = vec![0; n];
		let (swapped, loss) = choose_medoid_within_partition::<M, N, L>(mat, &assi, med, 0);
		return (loss, assi, 1, if swapped { 1 } else { 0 });
	}
	let (mut loss, mut data) = par_initial_assignment(mat, med);
	debug_assert_assignment(mat, med, &data);

	let mut removal_loss = vec![L::zero(); k];
	update_removal_loss(&data, &mut removal_loss);
	let (mut lastswap, mut n_swaps, mut iter) = (n, 0, 0);
	let seq = rand::seq::index::sample(rng, n, n); // random shuffling
	while iter < maxiter {
		iter += 1;
		let swaps_before = n_swaps;
		for j in seq.iter() {
			if j == lastswap {
				break;
			}
			if j == med[data[j].near.i as usize] {
				continue; // This already is a medoid
			}
			let (change, b) = par_find_best_swap(mat, &removal_loss, &data, j);
			if change >= L::zero() {
				continue; // No improvement
			}
			n_swaps += 1;
			lastswap = j;
			// perform the swap
			let newloss = par_do_swap(mat, med, &mut data, b, j);
			if newloss >= loss {
				break; // Probably numerically unstable now.
			}
			loss = newloss;
			update_removal_loss(&data, &mut removal_loss);
		}
		if n_swaps == swaps_before {
			break; // converged
		}
	}
	let assi = data.iter().map(|x| x.near.i as usize).collect();
	(loss, assi, iter, n_swaps)
}

/// Perform the initial assignment to medoids
#[inline]
fn par_initial_assignment<M, N, L>(mat: &M, med: &[usize]) -> (L, Vec<Rec<N>>)
where
	N: Zero + PartialOrd + Copy + Send + Sync,
	L: AddAssign + Zero + PartialOrd + Copy + From<N> + Send + Sync,
	M: ArrayAdapter<N> + Sync,
{
	let n = mat.len();
	let k = med.len();
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	assert!(n <= u32::MAX as usize, "N is too large");
	assert!(k > 0 && k < u32::MAX as usize, "invalid N");
	assert!(k <= n, "k must be at most N");
	let mut data = vec![Rec::<N>::empty(); mat.len()];
	let firstcenter = med[0];
	let loss = data
		.par_iter_mut()
		.enumerate()
		.map(|(i, cur)| {
			*cur = Rec::new(0, mat.get(i, firstcenter), u32::MAX, N::zero());
			for (m, &me) in med.iter().enumerate().skip(1) {
				let d = mat.get(i, me);
				if d < cur.near.d || i == me {
					cur.seco = cur.near;
					cur.near = DistancePair { i: m as u32, d };
				} else if cur.seco.i == u32::MAX || d < cur.seco.d {
					cur.seco = DistancePair { i: m as u32, d };
				}
			}
			L::from(cur.near.d)
		})
		.reduce_with(L::add)
		.unwrap();
	(loss, data)
}

/// Find the best swap for object j - FastPAM version (parallel version - without shared data)
#[inline]
fn par_find_best_swap<M, N, L>(mat: &M, removal_loss: &[L], data: &[Rec<N>], j: usize) -> (L, usize)
where
	N: Zero + PartialOrd + Copy + Sync + Send,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N> + Sync + Send,
	M: ArrayAdapter<N> + Sync + Send,
{
	let n = mat.len();
	let length: usize = removal_loss.len();
	let mut ploss = Array::from_vec(removal_loss.to_vec());
	let mut acc = L::zero();
	rayon::scope(|s| {
		let parts = rayon::current_num_threads();
		let stepsize = (n + parts - 1) / parts; // upper division
		let mutex = Arc::new(Mutex::new((&mut ploss, &mut acc)));
		for x in 0..parts {
			let mutex = Arc::clone(&mutex);
			s.spawn(move |_| {
				let mut loss = Array::zeros(length);
				let mut lagg = L::zero();
				let start = x * stepsize;
				let end = usize::min(start + stepsize, n);
				for o in start..end {
					let reco = &data[o];
					let djo = mat.get(j, o);
					// New medoid is closest:
					if djo < reco.near.d {
						lagg += L::from(djo) - L::from(reco.near.d);
						// loss already includes ds - dn, remove
						loss[reco.near.i as usize] += L::from(reco.near.d) - L::from(reco.seco.d);
					} else if djo < reco.seco.d {
						// loss already includes ds - dn, adjust to d(xo) - dn
						loss[reco.near.i as usize] += L::from(djo) - L::from(reco.seco.d);
					}
				}
				// Synchronize for merging the results
				let mut mutex = mutex.lock().unwrap();
				*mutex.0 += &loss;
				*mutex.1 += lagg;
			})
		}
	});
	let (b, bloss): (usize, L) = find_min(&mut ploss.iter());
	(bloss + acc, b) // add the shared accumulator
}

/// Perform a single swap -- parallel version
#[inline]
fn par_do_swap<M, N, L>(
	mat: &M,
	med: &mut Vec<usize>,
	data: &mut Vec<Rec<N>>,
	b: usize,
	j: usize,
) -> L
where
	N: Zero + PartialOrd + Copy + Send + Sync,
	L: AddAssign + Signed + Zero + PartialOrd + Copy + From<N> + Send + Sync,
	M: ArrayAdapter<N> + Sync,
{
	let n = mat.len();
	assert!(b < med.len(), "invalid medoid number");
	assert!(j < n, "invalid object number");
	med[b] = j;
	data.par_iter_mut()
		.enumerate()
		.map(|(o, reco)| {
			if o == j {
				if reco.near.i != b as u32 {
					reco.seco = reco.near;
				}
				reco.near = DistancePair::new(b as u32, N::zero());
				return L::zero();
			}
			let djo = mat.get(j, o);
			// Nearest medoid is gone:
			if reco.near.i == b as u32 {
				if djo < reco.seco.d {
					reco.near = DistancePair::new(b as u32, djo);
				} else {
					reco.near = reco.seco;
					reco.seco = update_second_nearest(mat, med, reco.near.i as usize, b, o, djo);
				}
			} else {
				// nearest not removed
				if djo < reco.near.d {
					reco.seco = reco.near;
					reco.near = DistancePair::new(b as u32, djo);
				} else if reco.seco.i == b as u32 {
					// second nearest was replaced
					reco.seco = update_second_nearest(mat, med, reco.near.i as usize, b, o, djo);
				} else if djo < reco.seco.d {
					reco.seco = DistancePair::new(b as u32, djo);
				}
			}
			L::from(reco.near.d)
		})
		.reduce_with(L::add)
		.unwrap()
}

#[cfg(test)]
mod tests {
	// TODO: use a larger, much more interesting example.
	use crate::{arrayadapter::LowerTriangle, par_fasterpam, par_silhouette, util::assert_array};
	use rand::{rngs::StdRng, SeedableRng};

	#[test]
	fn test_fasterpam_par() {
		let data = LowerTriangle {
			n: 5,
			data: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 1],
		};
		let mut meds = vec![0, 1];
		let mut rng = StdRng::seed_from_u64(1);
		let (loss, assi, n_iter, n_swap): (i64, _, _, _) =
			par_fasterpam(&data, &mut meds, 10, &mut rng);
		let sil: f64 = par_silhouette(&data, &assi);
		assert_eq!(loss, 4, "loss not as expected");
		assert_eq!(n_swap, 1, "swaps not as expected");
		assert_eq!(n_iter, 2, "iterations not as expected");
		assert_array(assi, vec![0, 0, 0, 1, 1], "assignment not as expected");
		assert_array(meds, vec![0, 4], "medoids not as expected");
		assert_eq!(sil, 0.7522494172494172, "Silhouette not as expected");
	}
}