kayrx 0.18.0

The Kayrx Framework
Documentation
//! Timer implementation.
//!
//! This module contains the types needed to run a timer.
//!
//! The [`Timer`] type runs the timer logic. It holds all the necessary state
//! to track all associated [`Delay`] instances and delivering notifications
//! once the deadlines are reached.
//!
//! The [`Handle`] type is a reference to a [`Timer`] instance. This type is
//! `Clone`, `Send`, and `Sync`. This type is used to create instances of
//! [`Delay`].
//!
//! The [`Now`] trait describes how to get an [`Instant`] representing the
//! current moment in time. [`SystemNow`] is the default implementation, where
//! [`Now::now`] is implemented by calling [`Instant::now`].
//!
//! [`Timer`] is generic over [`Now`]. This allows the source of time to be
//! customized. This ability is especially useful in tests and any environment
//! where determinism is necessary.
//!
//! Note,  the [`Timer`]  need to be manually
//! setup as the runtime comes pre-configured with a [`Timer`] instance.
//!
//! [`Timer`]: struct.Timer.html
//! [`Handle`]: struct.Handle.html
//! [`Delay`]: struct.Delay.html
//! [`Now`]: clock::Now.html
//! [`Now::now`]: clock::Now::now.html
//! [`SystemNow`]: struct.SystemNow.html
//! [`Instant`]: std::time::Instant.html
//! [`Instant::now`]: std::time::Instant::now

// This allows the usage of the old `Now` trait.
#![allow(deprecated)]
mod atomic_stack;
mod atomic_waker;
mod entry;
mod handle;
mod now;
pub(crate) mod park;
mod registration;
mod stack;

pub use self::handle::{set_default, Handle};
pub use self::now::{Now, SystemNow};

pub(crate) use self::atomic_waker::AtomicWaker;
pub(crate) use self::handle::HandlePriv;
pub(crate) use self::registration::Registration;

use self::atomic_stack::AtomicStack;
use self::entry::Entry;
use self::park::{Park, ParkThread, Unpark};
use self::stack::Stack;
use crate::timer::atomic::AtomicU64;
use crate::timer::wheel;
use crate::timer::Error;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::Arc;
use std::time::{Duration, Instant};
use std::usize;
use std::{cmp, fmt};

/// Timer implementation that drives [`Delay`], [`Interval`], and [`Timeout`].
///
/// A `Timer` instance tracks the state necessary for managing time and
/// notifying the [`Delay`] instances once their deadlines are reached.
///
/// It is expected that a single `Timer` instance manages many individual
/// [`Delay`] instances. The `Timer` implementation is thread-safe and, as such,
/// is able to handle callers from across threads.
///
/// Callers do not use `Timer` directly to create [`Delay`] instances.  Instead,
/// [`Handle`][Handle.struct] is used. A handle for the timer instance is obtained by calling
/// [`handle`]. [`Handle`][Handle.struct] is the type that implements `Clone` and is `Send +
/// Sync`.
///
/// After creating the `Timer` instance, the caller must repeatedly call
/// [`turn`]. The timer will perform no work unless [`turn`] is called
/// repeatedly.
///
/// The `Timer` has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When the `Timer` instance is dropped, any outstanding [`Delay`] instance that
/// has not elapsed will be notified with an error. At this point, calling
/// `poll` on the [`Delay`] instance will result in `Err` being returned.
///
/// # Implementation
///
/// `Timer` is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The `Timer` implementation maintains six wheels arranged in a set of levels.
/// As the levels go up, the slots of the associated wheel represent larger
/// intervals of time. At each level, the wheel has 64 slots. Each slot covers a
/// range of time equal to the wheel at the lower level. At level zero, each
/// slot represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// [`Delay`] instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries will [`Delay`] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [`Delay`]: struct.Delay.html
/// [`Interval`]: struct.Interval.html
/// [`Timeout`]: struct.Timeout.html
/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
/// [`handle`]: #method.handle
/// [`turn`]: #method.turn
/// [Handle.struct]: struct.Handle.html
#[derive(Debug)]
pub struct Timer<T, N = SystemNow> {
    /// Shared state
    inner: Arc<Inner>,

    /// Timer wheel
    wheel: wheel::Wheel<Stack>,

    /// Thread parker. The `Timer` park implementation delegates to this.
    park: T,

    /// Source of "now" instances
    now: N,
}

/// Return value from the `turn` method on `Timer`.
///
/// Currently this value doesn't actually provide any functionality, but it may
/// in the future give insight into what happened during `turn`.
#[derive(Debug)]
pub struct Turn(());

/// Timer state shared between `Timer`, `Handle`, and `Registration`.
pub(crate) struct Inner {
    /// The instant at which the timer started running.
    start: Instant,

    /// The last published timer `elapsed` value.
    elapsed: AtomicU64,

    /// Number of active timeouts
    num: AtomicUsize,

    /// Head of the "process" linked list.
    process: AtomicStack,

    /// Unparks the timer thread.
    unpark: Box<dyn Unpark>,
}

/// Maximum number of timeouts the system can handle concurrently.
const MAX_TIMEOUTS: usize = usize::MAX >> 1;

// ===== impl Timer =====

impl<T> Timer<T>
where
    T: Park,
{
    /// Create a new `Timer` instance that uses `park` to block the current
    /// thread.
    ///
    /// Once the timer has been created, a handle can be obtained using
    /// [`handle`]. The handle is used to create `Delay` instances.
    ///
    /// Use `default` when constructing a `Timer` using the default `park`
    /// instance.
    ///
    /// [`handle`]: #method.handle
    pub fn new(park: T) -> Self {
        Timer::new_with_now(park, SystemNow::new())
    }
}

impl<T, N> Timer<T, N> {
    /// Returns a reference to the underlying `Park` instance.
    pub fn get_park(&self) -> &T {
        &self.park
    }

    /// Returns a mutable reference to the underlying `Park` instance.
    pub fn get_park_mut(&mut self) -> &mut T {
        &mut self.park
    }
}

impl<T, N> Timer<T, N>
where
    T: Park,
    N: Now,
{
    /// Create a new `Timer` instance that uses `park` to block the current
    /// thread and `now` to get the current `Instant`.
    ///
    /// Specifying the source of time is useful when testing.
    pub fn new_with_now(park: T, mut now: N) -> Self {
        let unpark = Box::new(park.unpark());

        Timer {
            inner: Arc::new(Inner::new(now.now(), unpark)),
            wheel: wheel::Wheel::new(),
            park,
            now,
        }
    }

    /// Returns a handle to the timer.
    ///
    /// The `Handle` is how `Delay` instances are created. The `Delay` instances
    /// can either be created directly or the `Handle` instance can be passed to
    /// `with_default`, setting the timer as the default timer for the execution
    /// context.
    pub fn handle(&self) -> Handle {
        Handle::new(Arc::downgrade(&self.inner))
    }

    /// Performs one iteration of the timer loop.
    ///
    /// This function must be called repeatedly in order for the `Timer`
    /// instance to make progress. This is where the work happens.
    ///
    /// The `Timer` will use the `Park` instance that was specified in [`new`]
    /// to block the current thread until the next `Delay` instance elapses. One
    /// call to `turn` results in at most one call to `park.park()`.
    ///
    /// # Return
    ///
    /// On success, `Ok(Turn)` is returned, where `Turn` is a placeholder type
    /// that currently does nothing but may, in the future, have functions add
    /// to provide information about the call to `turn`.
    ///
    /// If the call to `park.park()` fails, then `Err` is returned with the
    /// error.
    ///
    /// [`new`]: #method.new
    pub fn turn(&mut self, max_wait: Option<Duration>) -> Result<Turn, T::Error> {
        match max_wait {
            Some(timeout) => self.park_timeout(timeout)?,
            None => self.park()?,
        }

        Ok(Turn(()))
    }

    /// Converts an `Expiration` to an `Instant`.
    fn expiration_instant(&self, when: u64) -> Instant {
        self.inner.start + Duration::from_millis(when)
    }

    /// Run timer related logic
    fn process(&mut self) {
        let now = crate::timer::ms(self.now.now() - self.inner.start, crate::timer::Round::Down);
        let mut poll = wheel::Poll::new(now);

        while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
            let when = entry.when_internal().expect("invalid internal entry state");

            // Fire the entry
            entry.fire(when);

            // Track that the entry has been fired
            entry.set_when_internal(None);
        }

        // Update the elapsed cache
        self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
    }

    /// Process the entry queue
    ///
    /// This handles adding and canceling timeouts.
    fn process_queue(&mut self) {
        for entry in self.inner.process.take() {
            match (entry.when_internal(), entry.load_state()) {
                (None, None) => {
                    // Nothing to do
                }
                (Some(_), None) => {
                    // Remove the entry
                    self.clear_entry(&entry);
                }
                (None, Some(when)) => {
                    // Queue the entry
                    self.add_entry(entry, when);
                }
                (Some(_), Some(next)) => {
                    self.clear_entry(&entry);
                    self.add_entry(entry, next);
                }
            }
        }
    }

    fn clear_entry(&mut self, entry: &Arc<Entry>) {
        self.wheel.remove(entry, &mut ());
        entry.set_when_internal(None);
    }

    /// Fire the entry if it needs to, otherwise queue it to be processed later.
    ///
    /// Returns `None` if the entry was fired.
    fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
        use crate::timer::wheel::InsertError;

        entry.set_when_internal(Some(when));

        match self.wheel.insert(when, entry, &mut ()) {
            Ok(_) => {}
            Err((entry, InsertError::Elapsed)) => {
                // The entry's deadline has elapsed, so fire it and update the
                // internal state accordingly.
                entry.set_when_internal(None);
                entry.fire(when);
            }
            Err((entry, InsertError::Invalid)) => {
                // The entry's deadline is invalid, so error it and update the
                // internal state accordingly.
                entry.set_when_internal(None);
                entry.error();
            }
        }
    }
}

impl Default for Timer<ParkThread, SystemNow> {
    fn default() -> Self {
        Timer::new(ParkThread::new())
    }
}

impl<T, N> Park for Timer<T, N>
where
    T: Park,
    N: Now,
{
    type Unpark = T::Unpark;
    type Error = T::Error;

    fn unpark(&self) -> Self::Unpark {
        self.park.unpark()
    }

    fn park(&mut self) -> Result<(), Self::Error> {
        self.process_queue();

        match self.wheel.poll_at() {
            Some(when) => {
                let now = self.now.now();
                let deadline = self.expiration_instant(when);

                if deadline > now {
                    self.park.park_timeout(deadline - now)?;
                } else {
                    self.park.park_timeout(Duration::from_secs(0))?;
                }
            }
            None => {
                self.park.park()?;
            }
        }

        self.process();

        Ok(())
    }

    fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
        self.process_queue();

        match self.wheel.poll_at() {
            Some(when) => {
                let now = self.now.now();
                let deadline = self.expiration_instant(when);

                if deadline > now {
                    self.park.park_timeout(cmp::min(deadline - now, duration))?;
                } else {
                    self.park.park_timeout(Duration::from_secs(0))?;
                }
            }
            None => {
                self.park.park_timeout(duration)?;
            }
        }

        self.process();

        Ok(())
    }
}

impl<T, N> Drop for Timer<T, N> {
    fn drop(&mut self) {
        use std::u64;

        // Shutdown the stack of entries to process, preventing any new entries
        // from being pushed.
        self.inner.process.shutdown();

        // Clear the wheel, using u64::MAX allows us to drain everything
        let mut poll = wheel::Poll::new(u64::MAX);

        while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
            entry.error();
        }
    }
}

// ===== impl Inner =====

impl Inner {
    fn new(start: Instant, unpark: Box<dyn Unpark>) -> Inner {
        Inner {
            num: AtomicUsize::new(0),
            elapsed: AtomicU64::new(0),
            process: AtomicStack::new(),
            start,
            unpark,
        }
    }

    fn elapsed(&self) -> u64 {
        self.elapsed.load(SeqCst)
    }

    /// Increment the number of active timeouts
    fn increment(&self) -> Result<(), Error> {
        let mut curr = self.num.load(SeqCst);

        loop {
            if curr == MAX_TIMEOUTS {
                return Err(Error::at_capacity());
            }

            let actual = self.num.compare_and_swap(curr, curr + 1, SeqCst);

            if curr == actual {
                return Ok(());
            }

            curr = actual;
        }
    }

    /// Decrement the number of active timeouts
    fn decrement(&self) {
        let prev = self.num.fetch_sub(1, SeqCst);
        debug_assert!(prev <= MAX_TIMEOUTS);
    }

    fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
        if self.process.push(entry)? {
            // The timer is notified so that it can process the timeout
            self.unpark.unpark();
        }

        Ok(())
    }

    fn normalize_deadline(&self, deadline: Instant) -> u64 {
        if deadline < self.start {
            return 0;
        }

        crate::timer::ms(deadline - self.start, crate::timer::Round::Up)
    }
}

impl fmt::Debug for Inner {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Inner").finish()
    }
}