1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256


use crate::ffi::vk::*;

use super::error::Result;
use super::error::ErrorCode;

use std::ptr;
use std::mem;
use std::ffi::{CStr, CString};
use std::mem::MaybeUninit;
use std::sync::Arc;

#[derive(Debug)]
pub struct Instance {
    handle: VkInstance,
}

impl Instance {
    pub fn new() -> Result<Arc<Instance>> {
        let application_name = CString::new("kaldera")?;
        let engine_name = CString::new("Kaldera Engine")?;
        let app_info = VkApplicationInfo::new(application_name.as_ptr(), 0, engine_name.as_ptr(), 0);
        let extension_names: Vec<CString> = vec![
            CString::new("VK_KHR_surface").unwrap(),
            CString::new("VK_KHR_xcb_surface").unwrap(),
            CString::new("VK_KHR_get_physical_device_properties2").unwrap(),
        ];
        let extension_name_ptrs = extension_names.iter()
            .map(|v| v.as_ptr())
            .collect();
        unsafe {
            let instance_info = VkInstanceCreateInfo::new(&app_info, &extension_name_ptrs);
            let mut handle = MaybeUninit::<VkInstance>::zeroed();
            vkCreateInstance(&instance_info, ptr::null(), handle.as_mut_ptr())
                .into_result()?;
            let handle = handle.assume_init();
            let instance = Instance { handle: handle };
            Ok(Arc::new(instance))
        }
    }

    #[inline]
    pub fn handle(&self) -> VkInstance {
        self.handle
    }

    pub fn extension_properties() -> Result<Vec<VkExtensionProperties>> {
        unsafe {
            let mut count = MaybeUninit::<u32>::zeroed();
            vkEnumerateInstanceExtensionProperties(std::ptr::null(), count.as_mut_ptr(), std::ptr::null_mut())
                .into_result()?;
            let size = count.assume_init() as usize;
            let mut extensions: Vec<VkExtensionProperties> = Vec::with_capacity(size);
            extensions.resize(size, std::mem::zeroed());
            vkEnumerateInstanceExtensionProperties(std::ptr::null(), count.as_mut_ptr(), extensions.as_mut_ptr())
                .into_result()?;
            Ok(extensions)
        }
    }
}

impl Drop for Instance {
    fn drop(&mut self) {
        log_debug!("Drop Instance");
        unsafe {
            vkDestroyInstance(self.handle, ptr::null());
            self.handle = ptr::null_mut();
        }
    }
}

pub struct PhysicalDevicesBuilder<'a> {
    instance: &'a Arc<Instance>,
}

impl<'a> PhysicalDevicesBuilder<'a> {
    pub fn new(instance: &'a Arc<Instance>) -> Self {
        PhysicalDevicesBuilder { instance: instance }
    }

    pub fn build(self) -> Result<Vec<Arc<PhysicalDevice>>> {
        let instance = self.instance;
        unsafe {
            let mut count = MaybeUninit::<u32>::zeroed();
            // obtain count
            vkEnumeratePhysicalDevices(instance.handle, count.as_mut_ptr(), ptr::null_mut())
                .into_result()?;
            // obtain items
            let size: usize = count.assume_init() as usize;
            let mut devices: Vec<VkPhysicalDevice> = Vec::with_capacity(size);
            devices.resize(size, ptr::null_mut());
            vkEnumeratePhysicalDevices(instance.handle, count.as_mut_ptr(), devices.as_mut_ptr())
                .into_result()?;
            let devices: Vec<Arc<PhysicalDevice>> = devices.into_iter()
                .map(|v| PhysicalDevice::new(v, instance))
                .collect();
            Ok(devices)
        }
    }
}

#[derive(Debug)]
pub struct PhysicalDevice {
    handle: VkPhysicalDevice,
    instance: Arc<Instance>,
}

impl PhysicalDevice {
    pub fn new(device: VkPhysicalDevice, instance: &Arc<Instance>) -> Arc<Self> {
        let device = PhysicalDevice { handle: device, instance: Arc::clone(instance) };
        Arc::new(device)
    }

    #[inline]
    pub fn handle(&self) -> VkPhysicalDevice {
        self.handle
    }

    #[inline]
    pub fn instance(&self) -> &Arc<Instance> {
        &self.instance
    }

    pub fn properties(&self) -> VkPhysicalDeviceProperties {
        unsafe {
            let mut properties = MaybeUninit::<VkPhysicalDeviceProperties>::zeroed();
            vkGetPhysicalDeviceProperties(self.handle, properties.as_mut_ptr());
            properties.assume_init()
        }
    }

    pub fn queue_families(&self) -> Result<Vec<QueueFamily>> {
        unsafe {
            let mut count = MaybeUninit::<u32>::zeroed();
            // obtain count
            vkGetPhysicalDeviceQueueFamilyProperties(self.handle, count.as_mut_ptr(), ptr::null_mut());
            // obtain items
            let size: usize = count.assume_init() as usize;
            let mut families: Vec<VkQueueFamilyProperties> = Vec::with_capacity(size);
            families.resize(size, std::mem::zeroed());
            vkGetPhysicalDeviceQueueFamilyProperties(self.handle, count.as_mut_ptr(), families.as_mut_ptr());
            let families: Vec<QueueFamily> = families.into_iter()
                .enumerate()
                .map(|(i, v)| QueueFamily::new(i as u32, v))
                .collect();
            Ok(families)
        }
    }

    pub fn extension_properties(&self) -> Result<Vec<VkExtensionProperties>> {
        unsafe {
            let mut count = MaybeUninit::<u32>::zeroed();
            vkEnumerateDeviceExtensionProperties(self.handle, ptr::null(), count.as_mut_ptr(), ptr::null_mut());
            let size = count.assume_init() as usize;
            let mut extensions: Vec<VkExtensionProperties> = Vec::with_capacity(size);
            extensions.resize(size, std::mem::zeroed());
            vkEnumerateDeviceExtensionProperties(self.handle, ptr::null(), count.as_mut_ptr(), extensions.as_mut_ptr());
            Ok(extensions)
        }
    }

    pub fn memory_type_index(&self, 
        memory_requirements: &VkMemoryRequirements, 
        memory_property_flags: VkMemoryPropertyFlags,
    ) -> Option<u32> {
        unsafe {
            let mut memory_properties = MaybeUninit::<VkPhysicalDeviceMemoryProperties>::zeroed();
            vkGetPhysicalDeviceMemoryProperties(self.handle(), memory_properties.as_mut_ptr());
            let memory_properties = memory_properties.assume_init();
            // find a memory type index that fits the properties
            let memory_type_bits = memory_requirements.memoryTypeBits;
            let memory_type_index = memory_properties.memoryTypes.iter()
                .enumerate()
                .find(|(i, v)| ((memory_type_bits >> i) & 1) == 1 
                    && (v.propertyFlags & memory_property_flags) == memory_property_flags)
                .map(|(i, _)| i as u32);
            memory_type_index
        }
    }
}

impl PhysicalDevice {
    pub fn properties_ray_tracing(&self) -> VkPhysicalDeviceRayTracingPropertiesKHR {
        unsafe {
            let mut ray_tracing = MaybeUninit::<VkPhysicalDeviceRayTracingPropertiesKHR>::zeroed();
            {
                let ray_tracing = ray_tracing.as_mut_ptr().as_mut().unwrap();
                ray_tracing.sType = VkStructureTypeExtRay::VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PROPERTIES_KHR;
                ray_tracing.pNext = ptr::null_mut();
            }
            let mut properties = MaybeUninit::<VkPhysicalDeviceProperties2>::zeroed();
            {
                let properties = properties.as_mut_ptr().as_mut().unwrap();
                properties.sType = VkStructureType::VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
                properties.pNext = ray_tracing.as_mut_ptr() as *mut _;
            }
            vkGetPhysicalDeviceProperties2(self.handle, properties.as_mut_ptr());
            ray_tracing.assume_init()
        }
    }
}

#[derive(Clone)]
pub struct QueueFamily {
    index: u32,
    property: VkQueueFamilyProperties,
}

impl QueueFamily {
    pub fn new(index: u32, property: VkQueueFamilyProperties) -> Self {
        QueueFamily { index: index, property: property }
    }

    #[inline]
    pub fn index(&self) -> u32 {
        self.index
    }

    #[inline]
    pub fn queue_count(&self) -> u32 {
        self.property.queueCount
    }

    #[inline]
    pub fn is_compute(&self) -> bool {
        self.property.has_compute_queue_bit()
    }

    #[inline]
    pub fn is_graphics(&self) -> bool {
        self.property.has_graphics_queue_bit()
    }
}

pub struct PhysicalDeviceCapabilities {
    devices: Vec<Arc<PhysicalDevice>>,
}

impl PhysicalDeviceCapabilities {
    pub fn new(instance: &Arc<Instance>) -> Result<Arc<Self>> {
        let devices = PhysicalDevicesBuilder::new(instance).build()?;
        let capabilities = Self {
            devices,
        };
        Ok(Arc::new(capabilities))
    }

    pub fn has_raytracing(&self) -> bool {
        let name = CString::new("VK_KHR_ray_tracing")
            .unwrap_or_default();
        self.devices.iter()
            .filter_map(|v| v.extension_properties().ok())
            .any(|v| v.iter().any(|v| v.extension_name() == name))
    }
}