1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

mod datastore;
mod iterators;

pub use datastore::*;
pub use datastore::K2Tree;
pub use iterators::{
  StemBit,
  LeafBit,
  Stems,
  StemsRaw,
  Leaves,
  IntoLeaves,
  LeavesRaw,
};

/* Common */
use bitvec::vec::BitVec;

impl K2Tree {
  fn layer_len(&self, l: usize) -> usize {
    if l == self.max_slayers-1 {
      return self.stems.len() - self.layer_start(l)
    }
    let layer_starts = self.layer_starts();
    layer_starts[l+1] - layer_starts[l]
  }
  fn get_coords(&self, leaf_bit_pos: usize) -> [usize; 2] {
    /* Start at the leaf_bit and traverse our way up to the top of the tree,
    keeping track of the path we took on our way up in terms of
    bit-positions (offsets) in the stems. Then, traverse back down the same
    path to find the coords of the leaf_bit. */
    let parent_bit = self.leaf_parent(leaf_bit_pos);
    let mut stem_start = self.stem_start(parent_bit);
    let mut offset = parent_bit - stem_start;
    let mut offsets = vec![offset];
    for _ in 1..self.max_slayers {
      let parent = self.parent(stem_start).unwrap();
      stem_start = parent[0];
      offset = parent[1];
      offsets.push(offset);
    }
    /* Reverse the offsets ready to traverse them back down the tree */
    offsets.reverse();
    let range_max = self.matrix_width()-1;
    let mut range = Range2D::new(0, range_max, 0, range_max);
    for child_offset in offsets.into_iter().take(self.max_slayers) {
      range = self.to_subranges(range).unwrap()[child_offset];
    }
    let leaf_offset = leaf_bit_pos - self.leaf_start(leaf_bit_pos);
    let x = leaf_offset % self.leaf_k;
    let y = leaf_offset / self.leaf_k;
    [range.min_x + x, range.min_y + y]
  }
  fn leaf_parent(&self, bit_pos: usize) -> usize {
    let nth_leaf = bit_pos / self.leaf_len();
    let final_stem_layer_start = self.layer_start(self.max_slayers-1);
    let stem_ones_positions = one_positions_range(
      &self.stems,
      final_stem_layer_start,
      self.stems.len()
    );
    final_stem_layer_start + stem_ones_positions[nth_leaf] //TODO: check
  }
  fn parent(&self, stem_start: usize) -> std::result::Result<[usize; 2], ()> {
    /* Returns [stem_start, bit_offset] */
    let stem_len = self.stem_len();
    if stem_start < stem_len {
      return Err(()) //First stem cannot have parent
    }
    /* Find which layer stem_start is in */
    let layer_starts = self.layer_starts();
    let stem_layer = {
      let mut layer = self.max_slayers-1; //If no match, must be in highest layer
      for (i, &layer_start) in layer_starts.iter().enumerate() {
        if stem_start < layer_start { layer = i-1; break }
      }
      layer
    };
    /* Find the nth stem it is in the layer */
    let stem_num = (stem_start - layer_starts[stem_layer]) / stem_len;
    /* Find the nth 1 in the parent layer */
    let parent_bit_relative_pos = one_positions_range(
      &self.stems,
      layer_starts[stem_layer-1],
      layer_starts[stem_layer]
    )[stem_num];
    let parent_bit_absolute_pos = parent_bit_relative_pos + layer_starts[stem_layer-1];
    Ok([self.stem_start(parent_bit_absolute_pos), parent_bit_absolute_pos % stem_len])
  }
  fn layer_start(&self, l: usize) -> usize {
    //Private method, let it crash seeing as is just unwrapped otherwise
    let mut curr_layer = 1;
    let mut layer_starts = vec![0, self.stem_len()];
    while curr_layer < l {
      let stems_in_curr_layer = ones_in_range(
        &self.stems,
        layer_starts[curr_layer-1],
        layer_starts[curr_layer]
      );
      let curr_layer_len = stems_in_curr_layer * self.stem_len();
      layer_starts.push(layer_starts[curr_layer] + curr_layer_len);
      curr_layer += 1;
    }
    layer_starts[l]
  }
  fn layer_starts(&self) -> Vec<usize> {
    //Private method, let it crash seeing as is just unwrapped otherwise
    let mut curr_layer = 1;
    let mut layer_starts = vec![0, self.stem_len()];
    while curr_layer < self.max_slayers-1 {
      let stems_in_curr_layer = ones_in_range(
        &self.stems,
        layer_starts[curr_layer-1],
        layer_starts[curr_layer]
      );
      let curr_layer_len = stems_in_curr_layer * self.stem_len();
      layer_starts.push(layer_starts[curr_layer] + curr_layer_len);
      curr_layer += 1;
    }
    layer_starts
  }
}

/* Block Utils */
impl K2Tree {
  fn stem_len(&self) -> usize {
    self.stem_k.pow(2)
  }
  fn leaf_len(&self) -> usize {
    self.leaf_k.pow(2)
  }
  fn stem_start(&self, bit_pos: usize) -> usize {
    (bit_pos / self.stem_len()) * self.stem_len()
  }
  fn leaf_start(&self, bit_pos: usize) -> usize {
    (bit_pos / self.leaf_len()) * self.leaf_len()
  }
  fn to_subranges(&self, r: Range2D) -> std::result::Result<SubRanges, crate::error::SubRangesError> {
    SubRanges::from_range(r, self.stem_k, self.stem_k)
  }
}

fn remove_block(bit_vec: &mut BitVec, block_start: usize, block_len: usize) -> std::result::Result<(), ()> {
  if block_start > bit_vec.len()-block_len
  || block_start % block_len != 0 {
    Err(())
  }
  else {
    for _ in 0..block_len { bit_vec.remove(block_start); }
    Ok(())
  }
}
fn insert_block(bit_vec: &mut BitVec, block_start: usize, block_len: usize) -> std::result::Result<(), ()> {
  if block_start > bit_vec.len()
  || block_start % block_len != 0 {
    Err(())
  }
  else {
    for _ in 0..block_len { bit_vec.insert(block_start, false); }
    Ok(())
  }
}
fn ones_in_range(bits: &BitVec, begin: usize, end: usize) -> usize {
  bits[begin..end].into_iter().fold(0, |total, bit| total + *bit as usize)
}
fn all_zeroes(bits: &BitVec, begin: usize, end: usize) -> bool {
  bits[begin..end].into_iter().fold(true, |total, bit| total & !bit)
}
fn one_positions(bits: impl Iterator<Item=bool>) -> Vec<usize> {
  bits
  .enumerate()
  .filter_map(
    |(pos, bit)|
    if bit { Some(pos) }
    else   { None })
  .collect()
}
fn one_positions_bv(bits: &BitVec) -> Vec<usize> {
  bits.iter()
  .enumerate()
  .filter_map(
    |(pos, &bit)|
    if bit { Some(pos) }
    else   { None })
  .collect()
}
fn one_positions_range(bits: &BitVec, begin: usize, end: usize) -> Vec<usize> {
  bits[begin..end].into_iter().enumerate()
  .filter_map(|(pos, bit)|
    if *bit { Some(pos) }
    else    { None }
  ).collect()
}

/* Ranges */
#[derive(Debug, Clone)]
struct SubRanges {
  /// Number of horizontal subranges.
  width: usize,
  /// Number of vertical subranges.
  height: usize,
  /// Subranges
  subranges: Vec<Range2D>,
}
impl SubRanges {
  fn from_range(r: Range2D, w: usize, h: usize) -> std::result::Result<Self, crate::error::SubRangesError> {
    // If the range cannot be evenly divided up by w and h, break
    if r.width() / w * w != r.width()
    || r.height() / h * h != r.height() {
      return Err(crate::error::SubRangesError::CannotSubdivideRange {
        range: [[r.min_x, r.min_y], [r.max_x, r.max_y]],
        horizontal_subdivisions: w,
        vertical_subdivisions: h,
      })
    }
    let mut subranges: Vec<Range2D> = Vec::new();
    let sub_width = r.width() / w;
    let sub_height = r.height() / h;
    // Process subranges by rows then columns
    for y in 0..h {
      for x in 0..w {
        let min_x = r.min_x + (x * sub_width);
        let max_x = min_x + sub_width-1;
        let min_y = r.min_y + (y * sub_height);
        let max_y = min_y + sub_height-1;
        subranges.push(Range2D::new(min_x, max_x, min_y, max_y));
      }
    }
    Ok(SubRanges {
      width: w,
      height: h,
      subranges
    })
  }
  fn iter(&self) -> impl Iterator<Item=&Range2D> {
    self.subranges.iter()
  }
}
impl std::ops::Index<usize> for SubRanges {
  type Output = Range2D;
  fn index(&self, i: usize) -> &Self::Output {
    &self.subranges[i]
  }
}
impl std::ops::IndexMut<usize> for SubRanges {
  fn index_mut(&mut self, i: usize) -> &mut Self::Output {
    &mut self.subranges[i]
  }
}

#[derive(Debug, Clone, Copy)]
struct Range2D {
  pub min_x: usize,
  pub max_x: usize,
  pub min_y: usize,
  pub max_y: usize
}
impl Range2D {
  fn new(min_x: usize, max_x: usize, min_y: usize, max_y: usize) -> Self {
    Range2D {
      min_x,
      max_x,
      min_y,
      max_y
    }
  }
  fn width(&self) -> usize {
    self.max_x - self.min_x + 1 // +1 because range is inclusive
  }
  fn height(&self) -> usize {
    self.max_y - self.min_y + 1 // +1 because range is inclusive
  }
  fn contains(&self, x: usize, y: usize) -> bool {
    x >= self.min_x && x <= self.max_x
    && y >= self.min_y && y <= self.max_y
  }
}
impl PartialEq for Range2D {
  fn eq(&self, other: &Self) -> bool {
    self.min_x == other.min_x
    && self.max_x == other.max_x
    && self.min_y == other.min_y
    && self.max_y == other.max_y
  }
}
impl Eq for Range2D {}

/* Tests */
#[cfg(test)]
mod range_tests {
  use super::*;
  type Result<T> = std::result::Result<T, crate::error::SubRangesError>;
  #[test]
  fn subranges_from_range2d_0() -> Result<()> {
    let original = Range2D::new(0, 7, 0, 7);
    let expected_subs = [
      Range2D::new(0, 3, 0, 3),
      Range2D::new(4, 7, 0, 3),
      Range2D::new(0, 3, 4, 7),
      Range2D::new(4, 7, 4, 7),
    ];
    let subs = SubRanges::from_range(original, 2, 2)?;
    for i in 0..4 { assert_eq!(expected_subs[i], subs[i]); }
    Ok(())
  }
  #[test]
  fn subranges_from_range2d_1() -> Result<()> {
    let original = Range2D::new(0, 8, 0, 8);
    let expected_subs = [
      Range2D::new(0, 2, 0, 2),
      Range2D::new(3, 5, 0, 2),
      Range2D::new(6, 8, 0, 2),
      Range2D::new(0, 2, 3, 5),
      Range2D::new(3, 5, 3, 5),
      Range2D::new(6, 8, 3, 5),
      Range2D::new(0, 2, 6, 8),
      Range2D::new(3, 5, 6, 8),
      Range2D::new(6, 8, 6, 8),
    ];
    let subs = SubRanges::from_range(original, 3, 3)?;
    for i in 0..9 { assert_eq!(expected_subs[i], subs[i]); }
    Ok(())
  }
  #[test]
  fn subranges_from_range2d_2() -> Result<()> {
    let original = Range2D::new(0, 8, 0, 7);
    let expected_subs = [
      Range2D::new(0, 2, 0, 3),
      Range2D::new(3, 5, 0, 3),
      Range2D::new(6, 8, 0, 3),
      Range2D::new(0, 2, 4, 7),
      Range2D::new(3, 5, 4, 7),
      Range2D::new(6, 8, 4, 7),
    ];
    let subs = SubRanges::from_range(original, 3, 2)?;
    for i in 0..6 { assert_eq!(expected_subs[i], subs[i]); }
    Ok(())
  }
}