jomini 0.21.0

Low level, performance oriented parser for save and game files from EU4, CK3, HOI4, Vic3, Imperator, and other PDS titles
Documentation
/*!

A low level, performance oriented parser for save and game files from [Paradox Development Studio](https://en.wikipedia.org/wiki/Paradox_Development_Studio) titles (eg: Europa Universalis (EU4), Hearts of Iron (HOI4), and Crusader Kings (CK3), Imperator, Stellaris, and Victoria).

For an in-depth look at the Paradox Clausewitz format and the pitfalls that come
trying to support all variations, consult [the write-up](https://pdx.tools/blog/a-tour-of-pds-clausewitz-syntax). In short, it's extremely difficult to write a robust and
fast parser that abstracts over the format difference between games as well as differences between game patches. Jomini hits the sweet spot between flexibility while still being ergonomic.

Jomini is the cornerstone of the [online EU4 save file
analyzer](https://pdx.tools). This library also powers the [Paradox Game
Converters](https://github.com/ParadoxGameConverters) and
[pdxu](https://github.com/crschnick/pdx_unlimiter).

## Features

- ✔ Versatile: Handle both plaintext and binary encoded data
- ✔ Fast: Parse data at 1 GB/s
- ✔ Small: Compile with zero dependencies
- ✔ Safe: Extensively fuzzed against potential malicious input
- ✔ Ergonomic: Use [serde](https://serde.rs/derive.html)-like macros to have parsing logic automatically implemented
- ✔ Embeddable: Cross platform native apps, statically compiled services, or in the browser via [Wasm](https://webassembly.org/)

## Quick Start

Below is a demonstration on parsing plaintext data using jomini tools.

```rust
# #[cfg(feature = "derive")] {
use jomini::{
    text::{Operator, Property},
    JominiDeserialize,
};

#[derive(JominiDeserialize, PartialEq, Debug)]
pub struct Model {
    human: bool,
    first: Option<u16>,
    third: Property<u16>,
    #[jomini(alias = "forth")]
    fourth: u16,
    #[jomini(alias = "core", duplicated)]
    cores: Vec<String>,
    names: Vec<String>,
}

let data = br#"
    human = yes
    third < 5
    forth = 10
    core = "HAB"
    names = { "Johan" "Frederick" }
    core = FRA
"#;

let expected = Model {
    human: true,
    first: None,
    third: Property::new(Operator::LessThan, 5),
    fourth: 10,
    cores: vec!["HAB".to_string(), "FRA".to_string()],
    names: vec!["Johan".to_string(), "Frederick".to_string()],
};

let actual: Model = jomini::text::de::from_windows1252_slice(data)?;
assert_eq!(actual, expected);
# }
# Ok::<(), Box<dyn std::error::Error>>(())
```

## Binary Parsing

Parsing data encoded in the binary format is done in a similar fashion but with a couple extra steps for the caller to supply:

- How text should be decoded (typically Windows-1252 or UTF-8)
- How rational (floating point) numbers are decoded
- How tokens, which are 16 bit integers that uniquely identify strings, are resolved

Implementors be warned, not only does each Paradox game have a different binary format, but the binary format can vary between patches!

Below is an example that defines a sample binary format and uses a hashmap token lookup.

```rust
# #[cfg(feature = "derive")] {
use jomini::{BinaryDeserializer, Encoding, JominiDeserialize, Windows1252Encoding};
use std::{borrow::Cow, collections::HashMap};

#[derive(JominiDeserialize, PartialEq, Debug)]
struct MyStruct {
    field1: String,
}

#[derive(Debug, Default)]
pub struct BinaryTestFlavor;

impl jomini::binary::BinaryFlavor for BinaryTestFlavor {
    fn visit_f32(&self, data: [u8; 4]) -> f32 {
        f32::from_le_bytes(data)
    }

    fn visit_f64(&self, data: [u8; 8]) -> f64 {
        f64::from_le_bytes(data)
    }
}

impl Encoding for BinaryTestFlavor {
    fn decode<'a>(&self, data: &'a [u8]) -> Cow<'a, str> {
        Windows1252Encoding::decode(data)
    }
}

let data = [ 0x82, 0x2d, 0x01, 0x00, 0x0f, 0x00, 0x03, 0x00, 0x45, 0x4e, 0x47 ];

let mut map = HashMap::new();
map.insert(0x2d82, "field1");

let actual: MyStruct = BinaryDeserializer::builder_flavor(BinaryTestFlavor)
    .deserialize_slice(&data[..], &map)?;
assert_eq!(actual, MyStruct { field1: "ENG".to_string() });
# }
# Ok::<(), Box<dyn std::error::Error>>(())
```

When done correctly, one can use the same structure to represent both the plaintext and binary data
without any duplication.

One can configure the behavior when a token is unknown (ie: fail immediately or try to continue).

## Caveats

Caller is responsible for:

- Determining the correct format (text or binary) ahead of time
- Stripping off any header that may be present (eg: `EU4txt` / `EU4bin`)
- Providing the token resolver for the binary format
- Providing the conversion to reconcile how, for example, a date may be encoded as an integer in
  the binary format, but as a string when in plaintext.

## The Mid-level API

If the automatic deserialization via `JominiDeserialize` is too high level, there is a mid-level
api where one can easily iterate through the parsed document and interrogate fields for
their information.

```rust
use jomini::TextTape;

let data = b"name=aaa name=bbb core=123 name=ccc name=ddd";
let tape = TextTape::from_slice(data).unwrap();
let reader = tape.windows1252_reader();

for (key, _op, value) in reader.fields() {
    println!("{:?}={:?}", key.read_str(), value.read_str().unwrap());
}
```

*/
#![cfg_attr(
    feature = "json",
    doc = r##"
### JSON

The mid-level API also provides the excellent utility of converting the
plaintext Clausewitz format to JSON when the `json` feature is enabled.

```rust
use jomini::TextTape;

# fn main() -> Result<(), Box<dyn std::error::Error>> {
let tape = TextTape::from_slice(b"foo=bar")?;
let reader = tape.windows1252_reader();
let actual = reader.json().to_string();
assert_eq!(actual, r#"{"foo":"bar"}"#);
# Ok(())
# }
```
"##
)]
/*!
## One Level Lower

At the lowest layer, one can interact with the raw data directly via `TextTape`
and `BinaryTape`.

```rust
use jomini::{TextTape, TextToken, Scalar};

let data = b"foo=bar";

assert_eq!(
    TextTape::from_slice(&data[..])?.tokens(),
    &[
        TextToken::Unquoted(Scalar::new(b"foo")),
        TextToken::Unquoted(Scalar::new(b"bar")),
    ]
);
# Ok::<(), Box<dyn std::error::Error>>(())
```

If one will only use `TextTape` and `BinaryTape` then `jomini` can be compiled without default
features, resulting in a build without dependencies.

## Write API

There are two targeted use cases for the write API. One is when a text tape is on hand.
This is useful when one needs to reformat a document (note that comments are not
preserved):

```rust
use jomini::{TextTape, TextWriterBuilder};

let tape = TextTape::from_slice(b"hello   = world")?;
let mut out: Vec<u8> = Vec::new();
let mut writer = TextWriterBuilder::new().from_writer(&mut out);
writer.write_tape(&tape)?;
assert_eq!(&out, b"hello=world");
# Ok::<(), Box<dyn std::error::Error>>(())
```

The writer normalizes any formatting issues. The writer is not able to
losslessly write all parsed documents, but these are limited to truly
esoteric situations and hope to be resolved in future releases.

The other use case is geared more towards incremental writing that can be
found in melters or those crafting documents by hand. These use cases need to
manually drive the writer:

```rust
use jomini::TextWriterBuilder;
let mut out: Vec<u8> = Vec::new();
let mut writer = TextWriterBuilder::new().from_writer(&mut out);
writer.write_unquoted(b"hello")?;
writer.write_unquoted(b"world")?;
writer.write_unquoted(b"foo")?;
writer.write_unquoted(b"bar")?;
assert_eq!(&out, b"hello=world\nfoo=bar");
# Ok::<(), Box<dyn std::error::Error>>(())
```
*/
#![warn(missing_docs)]
pub mod binary;
pub mod common;
mod copyless;
mod data;
#[cfg(feature = "derive")]
pub(crate) mod de;
mod encoding;
mod errors;
#[cfg(feature = "json")]
pub mod json;
mod scalar;
pub mod text;
pub(crate) mod util;

pub use self::binary::{BinaryTape, BinaryToken};
pub use self::encoding::*;
pub use self::errors::*;
pub use self::scalar::{Scalar, ScalarError};
pub use self::text::{TextTape, TextToken, TextWriter, TextWriterBuilder};

#[cfg(feature = "derive")]
#[doc(inline)]
pub use self::{binary::de::BinaryDeserializer, text::de::TextDeserializer};
#[cfg(feature = "derive")]
pub use jomini_derive::*;