1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
// BSD 2-Clause License
//
// Copyright (c) 2019, 2020 Alasdair Armstrong
// Copyright (c) 2020 Brian Campbell
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//! This module defines and implements functions for working with the
//! *Jib* IR (intermediate representation) that is produced by
//! Sail. It is a simple goto/conditional branch language, where each
//! function can declare and use an arbitrary amount of variables.
//!
//! All the IR types are parametric in the identifier type. They are
//! initially parsed as e.g. `Def<String>` but then the names are
//! interned into a symbol table ([Symtab]) and they are replaced by
//! values of type [Name], which is a wrapper around `u32`.
//!
//! To conveniently initialize the IR for a Sail architecture
//! specification see the [crate::init] module.

use serde::{Deserialize, Serialize};
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::hash::Hash;
use std::sync::Arc;

use crate::bitvector::{b64::B64, BV};
use crate::error::ExecError;
use crate::memory::Memory;
use crate::primop::{Binary, Primops, Unary, Variadic};
use crate::smt::{Solver, Sym};
use crate::zencode;

pub mod linearize;
pub mod serialize;
pub mod ssa;

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct Name {
    id: u32,
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum Ty<A> {
    I64,
    I128,
    AnyBits,
    Bits(u32),
    Unit,
    Bool,
    Bit,
    String,
    Real,
    Enum(A),
    Struct(A),
    Union(A),
    Vector(Box<Ty<A>>),
    FixedVector(u32, Box<Ty<A>>),
    List(Box<Ty<A>>),
    Ref(Box<Ty<A>>),
}

/// A [Loc] is a location that can be assigned to.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum Loc<A> {
    Id(A),
    Field(Box<Loc<A>>, A),
    Addr(Box<Loc<A>>),
}

impl<A: Clone> Loc<A> {
    pub fn id(&self) -> A {
        match self {
            Loc::Id(id) => id.clone(),
            Loc::Field(loc, _) | Loc::Addr(loc) => loc.id(),
        }
    }

    pub fn id_mut(&mut self) -> &mut A {
        match self {
            Loc::Id(id) => id,
            Loc::Field(loc, _) | Loc::Addr(loc) => loc.id_mut(),
        }
    }
}

#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub enum Op {
    Not,
    Or,
    And,
    Eq,
    Neq,
    Lteq,
    Lt,
    Gteq,
    Gt,
    Add,
    Sub,
    Slice(u32),
    SetSlice,
    Signed(u32),
    Unsigned(u32),
    ZeroExtend(u32),
    Bvnot,
    Bvor,
    Bvxor,
    Bvand,
    Bvadd,
    Bvsub,
    Bvaccess,
    Concat,
    Head,
    Tail,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct EnumMember {
    pub enum_id: usize,
    pub member: usize,
}

/// A value is either a symbolic value, represented as `Symbolic(n)`
/// for where n is the identifier of the variable in the SMT solver,
/// or one of the concrete values in this enum.
#[derive(Clone, Debug)]
pub enum Val<B> {
    Symbolic(Sym),
    I64(i64),
    I128(i128),
    Bool(bool),
    Bits(B),
    String(String),
    Unit,
    Vector(Vec<Val<B>>),
    List(Vec<Val<B>>),
    Enum(EnumMember),
    Struct(HashMap<Name, Val<B>>),
    Ctor(Name, Box<Val<B>>),
    Ref(Name),
    Poison,
}

impl<B: BV> Val<B> {
    fn collect_symbolic_variables(&self, vars: &mut HashSet<Sym>) {
        use Val::*;
        match self {
            Symbolic(v) => {
                vars.insert(*v);
            }
            I64(_) | I128(_) | Bool(_) | Bits(_) | Enum(_) | String(_) | Unit | Ref(_) | Poison => (),
            Vector(vals) | List(vals) => vals.iter().for_each(|val| val.collect_symbolic_variables(vars)),
            Struct(vals) => vals.iter().for_each(|(_, val)| val.collect_symbolic_variables(vars)),
            Ctor(_, val) => val.collect_symbolic_variables(vars),
        }
    }

    pub fn symbolic_variables(&self) -> HashSet<Sym> {
        let mut vars = HashSet::new();
        self.collect_symbolic_variables(&mut vars);
        vars
    }

    pub fn is_symbolic(&self) -> bool {
        !self.symbolic_variables().is_empty()
    }

    pub fn as_bits(&self) -> Option<&B> {
        match self {
            Val::Bits(bv) => Some(bv),
            _ => None,
        }
    }

    pub fn to_string(&self, symtab: &Symtab) -> String {
        use Val::*;
        match self {
            Symbolic(v) => format!("v{}", v),
            I64(n) => format!("(_ bv{} 64)", n),
            I128(n) => format!("(_ bv{} 128)", n),
            Bool(b) => format!("{}", b),
            Bits(bv) => format!("{}", bv),
            String(s) => format!("\"{}\"", s),
            Enum(EnumMember { enum_id, member }) => format!("e{}_{}", enum_id, member),
            Unit => "(_ unit)".to_string(),
            List(vec) => {
                let vec =
                    vec.iter()
                        .map(|elem| elem.to_string(symtab))
                        .fold(None, |acc, elem| {
                            if let Some(prefix) = acc {
                                Some(format!("{} {}", prefix, elem))
                            } else {
                                Some(elem)
                            }
                        })
                        .unwrap_or_else(|| "nil".to_string());
                format!("(_ list {})", vec)
            }
            Vector(vec) => {
                let vec =
                    vec.iter()
                        .map(|elem| elem.to_string(symtab))
                        .fold(None, |acc, elem| {
                            if let Some(prefix) = acc {
                                Some(format!("{} {}", prefix, elem))
                            } else {
                                Some(elem)
                            }
                        })
                        .unwrap_or_else(|| "nil".to_string());
                format!("(_ vec {})", vec)
            }
            Struct(fields) => {
                let fields = fields
                    .iter()
                    .map(|(k, v)| format!("(|{}| {})", zencode::decode(symtab.to_str(*k)), v.to_string(symtab)))
                    .fold(
                        None,
                        |acc, kv| {
                            if let Some(prefix) = acc {
                                Some(format!("{} {}", prefix, kv))
                            } else {
                                Some(kv)
                            }
                        },
                    )
                    .unwrap();
                format!("(_ struct {})", fields)
            }
            Ctor(ctor, v) => format!("(|{}| {})", zencode::decode(symtab.to_str(*ctor)), v.to_string(symtab)),
            Ref(reg) => format!("(_ reg |{}|)", zencode::decode(symtab.to_str(*reg))),
            Poison => "(_ poison)".to_string(),
        }
    }

    /// Just enough of a type check to pick up bad default registers
    pub fn plausible<N: std::fmt::Debug>(&self, ty: &Ty<N>, symtab: &Symtab) -> Result<(), String> {
        match (self, ty) {
            (Val::Symbolic(_), _) => Ok(()),
            (Val::I64(_), Ty::I64) => Ok(()),
            (Val::I128(_), Ty::I128) => Ok(()),
            (Val::Bool(_), Ty::Bool) => Ok(()),
            (Val::Bits(_), Ty::AnyBits) => Ok(()),
            (Val::Bits(bv), Ty::Bits(n)) => {
                if bv.len() == *n {
                    Ok(())
                } else {
                    Err(format!("value {} doesn't appear to match type {:?}", self.to_string(symtab), ty))
                }
            }
            (Val::String(_), Ty::String) => Ok(()),
            (Val::Unit, Ty::Unit) => Ok(()),
            (Val::Vector(_), Ty::Vector(_)) => Ok(()), // TODO: element type
            (Val::List(_), Ty::List(_)) => Ok(()),     // TODO: element type
            (Val::Enum(_), Ty::Enum(_)) => Ok(()),     // TODO: element type
            (Val::Struct(_), Ty::Struct(_)) => Ok(()), // TODO: element type
            (Val::Ctor(_, _), _) => Ok(()),            // TODO
            (Val::Ref(_), _) => Ok(()),                // TODO
            (Val::Poison, _) => Ok(()),
            (_, _) => Err(format!("value {} doesn't appear to match type {:?}", self.to_string(symtab), ty)),
        }
    }
}

/// A [UVal] is a potentially uninitialized [Val].
#[derive(Clone, Debug)]
pub enum UVal<'ir, B> {
    Uninit(&'ir Ty<Name>),
    Init(Val<B>),
}

/// A map from identifers to potentially uninitialized values.
pub type Bindings<'ir, B> = HashMap<Name, UVal<'ir, B>>;

/// A reference to either the declaration of a variable or a usage
/// location.
pub enum Variable<'a, A> {
    Declaration(&'a mut A),
    Usage(&'a mut A),
}

/// An iterator over the [Variable] type for modifying variable usages
/// and declarations.
pub struct Variables<'a, A> {
    vec: Vec<Variable<'a, A>>,
}

impl<'a, A> Variables<'a, A> {
    pub fn from_vec(vec: Vec<Variable<'a, A>>) -> Self {
        Variables { vec }
    }
}

impl<'a, A> Iterator for Variables<'a, A> {
    type Item = Variable<'a, A>;

    fn next(&mut self) -> Option<Self::Item> {
        self.vec.pop()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum Exp<A> {
    Id(A),
    Ref(A),
    Bool(bool),
    Bits(B64),
    String(String),
    Unit,
    I64(i64),
    I128(i128),
    Undefined(Ty<A>),
    Struct(A, Vec<(A, Exp<A>)>),
    Kind(A, Box<Exp<A>>),
    Unwrap(A, Box<Exp<A>>),
    Field(Box<Exp<A>>, A),
    Call(Op, Vec<Exp<A>>),
}

impl<A: Hash + Eq + Clone> Exp<A> {
    fn collect_ids(&self, ids: &mut HashSet<A>) {
        use Exp::*;
        match self {
            Id(id) => {
                ids.insert(id.clone());
            }
            Ref(_) | Bool(_) | Bits(_) | String(_) | Unit | I64(_) | I128(_) | Undefined(_) => (),
            Kind(_, exp) | Unwrap(_, exp) | Field(exp, _) => exp.collect_ids(ids),
            Call(_, exps) => exps.iter().for_each(|exp| exp.collect_ids(ids)),
            Struct(_, fields) => fields.iter().for_each(|(_, exp)| exp.collect_ids(ids)),
        }
    }

    pub(crate) fn collect_variables<'a, 'b>(&'a mut self, vars: &'b mut Vec<Variable<'a, A>>) {
        use Exp::*;
        match self {
            Id(id) => vars.push(Variable::Usage(id)),
            Ref(_) | Bool(_) | Bits(_) | String(_) | Unit | I64(_) | I128(_) | Undefined(_) => (),
            Kind(_, exp) | Unwrap(_, exp) | Field(exp, _) => exp.collect_variables(vars),
            Call(_, exps) => exps.iter_mut().for_each(|exp| exp.collect_variables(vars)),
            Struct(_, fields) => fields.iter_mut().for_each(|(_, exp)| exp.collect_variables(vars)),
        }
    }

    pub fn variables(&mut self) -> Variables<'_, A> {
        let mut vec = Vec::new();
        self.collect_variables(&mut vec);
        Variables::from_vec(vec)
    }
}

#[derive(Clone)]
pub enum Instr<A, B> {
    Decl(A, Ty<A>),
    Init(A, Ty<A>, Exp<A>),
    Jump(Exp<A>, usize, String),
    Goto(usize),
    Copy(Loc<A>, Exp<A>),
    Monomorphize(A),
    Call(Loc<A>, bool, A, Vec<Exp<A>>),
    PrimopUnary(Loc<A>, Unary<B>, Exp<A>),
    PrimopBinary(Loc<A>, Binary<B>, Exp<A>, Exp<A>),
    PrimopVariadic(Loc<A>, Variadic<B>, Vec<Exp<A>>),
    Failure,
    Arbitrary,
    End,
}

impl<A: fmt::Debug, B: fmt::Debug> fmt::Debug for Instr<A, B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use Instr::*;
        match self {
            Decl(id, ty) => write!(f, "{:?} : {:?}", id, ty),
            Init(id, ty, exp) => write!(f, "{:?} : {:?} = {:?}", id, ty, exp),
            Jump(exp, target, info) => write!(f, "jump {:?} to {:?} ` {:?}", exp, target, info),
            Goto(target) => write!(f, "goto {:?}", target),
            Copy(loc, exp) => write!(f, "{:?} = {:?}", loc, exp),
            Monomorphize(id) => write!(f, "mono {:?}", id),
            Call(loc, ext, id, args) => write!(f, "{:?} = {:?}<{:?}>({:?})", loc, id, ext, args),
            Failure => write!(f, "failure"),
            Arbitrary => write!(f, "arbitrary"),
            End => write!(f, "end"),
            PrimopUnary(loc, fptr, exp) => write!(f, "{:?} = {:p}({:?})", loc, fptr, exp),
            PrimopBinary(loc, fptr, lhs, rhs) => write!(f, "{:?} = {:p}({:?}, {:?})", loc, fptr, lhs, rhs),
            PrimopVariadic(loc, fptr, args) => write!(f, "{:?} = {:p}({:?})", loc, fptr, args),
        }
    }
}

/// Append instructions from rhs into the lhs vector, leaving rhs
/// empty (the same behavior as `Vec::append`).
pub fn append_instrs<A, B>(lhs: &mut Vec<Instr<A, B>>, rhs: &mut Vec<Instr<A, B>>) {
    for instr in rhs.iter_mut() {
        match instr {
            Instr::Goto(label) => *label += lhs.len(),
            Instr::Jump(_, label, _) => *label += lhs.len(),
            _ => (),
        }
    }
    lhs.append(rhs)
}

#[derive(Clone)]
pub enum Def<A, B> {
    Register(A, Ty<A>),
    Let(Vec<(A, Ty<A>)>, Vec<Instr<A, B>>),
    Enum(A, Vec<A>),
    Struct(A, Vec<(A, Ty<A>)>),
    Union(A, Vec<(A, Ty<A>)>),
    Val(A, Vec<Ty<A>>, Ty<A>),
    Extern(A, String, Vec<Ty<A>>, Ty<A>),
    Fn(A, Vec<A>, Vec<Instr<A, B>>),
}

impl Name {
    pub fn from_u32(id: u32) -> Self {
        Name { id }
    }
}

/// A [Symtab] is a symbol table that maps each `u32` identifier used
/// in the IR to it's `&str` name and vice-versa.
#[derive(Clone)]
pub struct Symtab<'ir> {
    symbols: Vec<&'ir str>,
    table: HashMap<&'ir str, u32>,
    next: u32,
}

/// When a function returns via the [Instr::End] instruction, the
/// value returned is contained in the special [RETURN] variable.
pub const RETURN: Name = Name { id: 0 };

/// Function id for the primop implementing the `assert` construct in
/// Sail.
pub const SAIL_ASSERT: Name = Name { id: 1 };

/// Function id for the `assume` primop, which is like a Sail assert
/// but always corresponds to an raw SMT assert.
pub const SAIL_ASSUME: Name = Name { id: 2 };

/// Function id for the primop implementing the `exit` construct in
/// Sail.
pub const SAIL_EXIT: Name = Name { id: 3 };

/// [CURRENT_EXCEPTION] is a global variable containing an exception
/// with the sail type `exception`. It is only defined when
/// [HAVE_EXCEPTION] is true.
pub const CURRENT_EXCEPTION: Name = Name { id: 4 };

/// [HAVE_EXCEPTION] is a global boolean variable which is true if an
/// exception is being thrown.
pub const HAVE_EXCEPTION: Name = Name { id: 5 };

/// [THROW_LOCATION] is a global variable which contains a string
/// describing the location of the last thrown exeception.
pub const THROW_LOCATION: Name = Name { id: 6 };

/// Special primitive that initializes a generic vector
pub const INTERNAL_VECTOR_INIT: Name = Name { id: 7 };

/// Special primitive used while initializing a generic vector
pub const INTERNAL_VECTOR_UPDATE: Name = Name { id: 8 };

/// Special primitive for `update_fbits`
pub const BITVECTOR_UPDATE: Name = Name { id: 9 };

/// [NULL] is a global letbinding which contains the empty list
pub const NULL: Name = Name { id: 10 };

/// The function id for the `elf_entry` function.
pub const ELF_ENTRY: Name = Name { id: 11 };

/// Is the function id of the `reg_deref` primop, that implements
/// register dereferencing `*R` in Sail.
pub const REG_DEREF: Name = Name { id: 12 };

/// [SAIL_EXCEPTION] is the Sail `exception` type
pub const SAIL_EXCEPTION: Name = Name { id: 13 };

/// [TOP_LEVEL_LET] is a name used in backtraces when evaluating a top-level let definition
pub const TOP_LEVEL_LET: Name = Name { id: 14 };

/// [BV_BIT_LEFT] is the field name for the left element of a bitvector,bit pair
pub const BV_BIT_LEFT: Name = Name { id: 15 };

/// [BV_BIT_RIGHT] is the field name for the right element of a bitvector,bit pair
pub const BV_BIT_RIGHT: Name = Name { id: 16 };

/// [RESET_REGISTERS] is a special function that resets register
/// values according to the ISA config
pub const RESET_REGISTERS: Name = Name { id: 17 };

static GENSYM: &str = "|GENSYM|";

impl<'ir> Symtab<'ir> {
    pub fn intern(&mut self, sym: &'ir str) -> Name {
        match self.table.get(sym) {
            None => {
                let n = self.next;
                self.symbols.push(sym);
                self.table.insert(sym, n);
                self.next += 1;
                Name::from_u32(n)
            }
            Some(n) => Name::from_u32(*n),
        }
    }

    pub fn gensym(&mut self) -> Name {
        let n = self.next;
        self.symbols.push(GENSYM);
        self.table.insert(GENSYM, n);
        self.next += 1;
        Name::from_u32(n)
    }

    pub fn to_raw_table(&self) -> Vec<String> {
        self.symbols.iter().map(|sym| (*sym).to_string()).collect()
    }

    pub fn from_raw_table(raw: &'ir [String]) -> Self {
        let mut symtab =
            Symtab { symbols: Vec::with_capacity(raw.len()), table: HashMap::with_capacity(raw.len()), next: 0 };
        for sym in raw {
            symtab.intern(sym);
        }
        symtab
    }

    pub fn to_str(&self, n: Name) -> &'ir str {
        match self.symbols.get(n.id as usize) {
            Some(s) => s,
            None => "zUNKNOWN",
        }
    }

    #[allow(clippy::new_without_default)]
    pub fn new() -> Self {
        let mut symtab = Symtab { symbols: Vec::new(), table: HashMap::new(), next: 0 };
        symtab.intern("return");
        symtab.intern("zsail_assert");
        symtab.intern("zsail_assume");
        symtab.intern("zsail_exit");
        symtab.intern("current_exception");
        symtab.intern("have_exception");
        symtab.intern("throw_location");
        symtab.intern("zinternal_vector_init");
        symtab.intern("zinternal_vector_update");
        symtab.intern("zupdate_fbits");
        symtab.intern("NULL");
        symtab.intern("elf_entry");
        symtab.intern("reg_deref");
        symtab.intern("zexception");
        symtab.intern("|let|");
        symtab.intern("ztuplez3z5bv_z5bit0");
        symtab.intern("ztuplez3z5bv_z5bit1");
        symtab.intern("reset_registers");
        symtab
    }

    pub fn lookup(&self, sym: &str) -> Name {
        Name::from_u32(*self.table.get(sym).unwrap_or_else(|| {
            eprintln!("Could not find symbol: {}", sym);
            &std::u32::MAX
        }))
    }

    pub fn get(&self, sym: &str) -> Option<Name> {
        self.table.get(sym).copied().map(Name::from_u32)
    }

    pub fn intern_ty(&mut self, ty: &'ir Ty<String>) -> Ty<Name> {
        use Ty::*;
        match ty {
            I64 => I64,
            I128 => I128,
            AnyBits => AnyBits,
            Bits(sz) => Bits(*sz),
            Unit => Unit,
            Bool => Bool,
            Bit => Bit,
            String => String,
            Real => Real,
            Enum(e) => Enum(self.lookup(e)),
            Struct(s) => Struct(self.lookup(s)),
            Union(u) => Union(self.lookup(u)),
            Vector(ty) => Vector(Box::new(self.intern_ty(ty))),
            FixedVector(sz, ty) => FixedVector(*sz, Box::new(self.intern_ty(ty))),
            List(ty) => List(Box::new(self.intern_ty(ty))),
            Ref(ty) => Ref(Box::new(self.intern_ty(ty))),
        }
    }

    pub fn get_loc(&self, loc: &Loc<String>) -> Option<Loc<Name>> {
        use Loc::*;
        Some(match loc {
            Id(v) => Id(self.get(v)?),
            Field(loc, field) => Field(Box::new(self.get_loc(loc)?), self.get(field)?),
            Addr(loc) => Addr(Box::new(self.get_loc(loc)?)),
        })
    }

    pub fn intern_loc(&mut self, loc: &'ir Loc<String>) -> Loc<Name> {
        use Loc::*;
        match loc {
            Id(v) => Id(self.lookup(v)),
            Field(loc, field) => Field(Box::new(self.intern_loc(loc)), self.lookup(field)),
            Addr(loc) => Addr(Box::new(self.intern_loc(loc))),
        }
    }

    pub fn intern_exp(&mut self, exp: &'ir Exp<String>) -> Exp<Name> {
        use Exp::*;
        match exp {
            Id(v) => Id(self.lookup(v)),
            Ref(reg) => Ref(self.lookup(reg)),
            Bool(b) => Bool(*b),
            Bits(bv) => Bits(*bv),
            String(s) => String(s.clone()),
            Unit => Unit,
            I64(i) => I64(*i),
            I128(i) => I128(*i),
            Undefined(ty) => Undefined(self.intern_ty(ty)),
            Struct(s, fields) => Struct(
                self.lookup(s),
                fields.iter().map(|(field, exp)| (self.lookup(field), self.intern_exp(exp))).collect(),
            ),
            Kind(ctor, exp) => Kind(self.lookup(ctor), Box::new(self.intern_exp(exp))),
            Unwrap(ctor, exp) => Unwrap(self.lookup(ctor), Box::new(self.intern_exp(exp))),
            Field(exp, field) => Field(Box::new(self.intern_exp(exp)), self.lookup(field)),
            Call(op, args) => Call(*op, args.iter().map(|exp| self.intern_exp(exp)).collect()),
        }
    }

    pub fn intern_instr<B: BV>(&mut self, instr: &'ir Instr<String, B>) -> Instr<Name, B> {
        use Instr::*;
        match instr {
            Decl(v, ty) => Decl(self.intern(v), self.intern_ty(ty)),
            Init(v, ty, exp) => {
                let exp = self.intern_exp(exp);
                Init(self.intern(v), self.intern_ty(ty), exp)
            }
            Jump(exp, target, loc) => Jump(self.intern_exp(exp), *target, loc.clone()),
            Goto(target) => Goto(*target),
            Copy(loc, exp) => Copy(self.intern_loc(loc), self.intern_exp(exp)),
            Monomorphize(id) => Monomorphize(self.lookup(id)),
            Call(loc, ext, f, args) => {
                let loc = self.intern_loc(loc);
                let args = args.iter().map(|exp| self.intern_exp(exp)).collect();
                Call(loc, *ext, self.lookup(f), args)
            }
            Failure => Failure,
            Arbitrary => Arbitrary,
            End => End,
            // We split calls into primops/regular calls later, so
            // these shouldn't exist yet.
            PrimopUnary(_, _, _) => unreachable!("PrimopUnary in intern_instr"),
            PrimopBinary(_, _, _, _) => unreachable!("PrimopBinary in intern_instr"),
            PrimopVariadic(_, _, _) => unreachable!("PrimopVariadic in intern_instr"),
        }
    }

    pub fn intern_def<B: BV>(&mut self, def: &'ir Def<String, B>) -> Def<Name, B> {
        use Def::*;
        match def {
            Register(reg, ty) => Register(self.intern(reg), self.intern_ty(ty)),
            Let(bindings, setup) => {
                let bindings = bindings.iter().map(|(v, ty)| (self.intern(v), self.intern_ty(ty))).collect();
                let setup = setup.iter().map(|instr| self.intern_instr(instr)).collect();
                Let(bindings, setup)
            }
            Enum(e, ctors) => Enum(self.intern(e), ctors.iter().map(|ctor| self.intern(ctor)).collect()),
            Struct(s, fields) => {
                let fields = fields.iter().map(|(field, ty)| (self.intern(field), self.intern_ty(ty))).collect();
                Struct(self.intern(s), fields)
            }
            Union(u, ctors) => {
                let ctors = ctors.iter().map(|(ctor, ty)| (self.intern(ctor), self.intern_ty(ty))).collect();
                Union(self.intern(u), ctors)
            }
            Val(f, args, ret) => {
                Val(self.intern(f), args.iter().map(|ty| self.intern_ty(ty)).collect(), self.intern_ty(ret))
            }
            Extern(f, ext, args, ret) => Extern(
                self.intern(f),
                ext.clone(),
                args.iter().map(|ty| self.intern_ty(ty)).collect(),
                self.intern_ty(ret),
            ),
            Fn(f, args, body) => {
                let args = args.iter().map(|arg| self.intern(arg)).collect();
                let body = body.iter().map(|instr| self.intern_instr(instr)).collect();
                Fn(self.lookup(f), args, body)
            }
        }
    }

    pub fn intern_defs<B: BV>(&mut self, defs: &'ir [Def<String, B>]) -> Vec<Def<Name, B>> {
        defs.iter().map(|def| self.intern_def(def)).collect()
    }
}

/// A function declaration is a tripe of name * type pairs of
/// parameters, the return type, and a list of instructions for the
/// function body.
type FnDecl<'ir, B> = (Vec<(Name, &'ir Ty<Name>)>, Ty<Name>, &'ir [Instr<Name, B>]);

/// The idea behind the `Reset` type is we dynamically create what is
/// essentially a Sail function consisting of:
///
/// ```text
/// reg1 = f();
/// reg2 = g();
/// ...
/// ```
///
/// where `f` and `g` are Rust closures of type `Reset`. This is used
/// to define custom architectural reset values of these registers, in
/// a possibly symbolic way or based on some memory value. As an
/// example, for ARMv8 system concurrency litmus tests we can set up
/// something like `X1 = pte(virtual_address)`, where `pte` is the
/// address of the third level page table entry for a virtual address.
pub type Reset<B> = Arc<dyn 'static + Send + Sync + Fn(&Memory<B>, &mut Solver<B>) -> Result<Val<B>, ExecError>>;

/// All symbolic evaluation happens over some (immutable) IR. The
/// [SharedState] provides each worker that is performing symbolic
/// evaluation with a convenient view into that IR.
pub struct SharedState<'ir, B> {
    /// A map from function identifers to function bodies and parameter lists
    pub functions: HashMap<Name, FnDecl<'ir, B>>,
    /// The symbol table for the IR
    pub symtab: Symtab<'ir>,
    /// A map from struct identifers to a map from field identifiers
    /// to their types
    pub structs: HashMap<Name, HashMap<Name, Ty<Name>>>,
    /// A map from enum identifiers to sets of their member
    /// identifiers
    pub enums: HashMap<Name, HashSet<Name>>,
    /// `enum_members` maps each enum member for every enum to it's
    /// position (as a (pos, size) pair, i.e. 1 of 3) within its
    /// respective enum
    pub enum_members: HashMap<Name, (usize, usize)>,
    /// `union_ctors` is a set of all union constructor identifiers
    pub union_ctors: HashSet<Name>,
    /// `probes` is a set of function/location identifers to trace
    pub probes: HashSet<Name>,
    /// `reset_registers` is a are reset values for each register
    /// derived from the ISA config
    pub reset_registers: HashMap<Loc<Name>, Reset<B>>,
}

impl<'ir, B: BV> SharedState<'ir, B> {
    pub fn new(
        symtab: Symtab<'ir>,
        defs: &'ir [Def<Name, B>],
        probes: HashSet<Name>,
        reset_registers: HashMap<Loc<Name>, Reset<B>>,
    ) -> Self {
        let mut vals = HashMap::new();
        let mut functions: HashMap<Name, FnDecl<'ir, B>> = HashMap::new();
        let mut structs: HashMap<Name, HashMap<Name, Ty<Name>>> = HashMap::new();
        let mut enums: HashMap<Name, HashSet<Name>> = HashMap::new();
        let mut enum_members: HashMap<Name, (usize, usize)> = HashMap::new();
        let mut union_ctors: HashSet<Name> = HashSet::new();

        for def in defs {
            match def {
                Def::Val(f, arg_tys, ret_ty) => {
                    vals.insert(f, (arg_tys, ret_ty));
                }

                Def::Fn(f, args, body) => match vals.get(f) {
                    None => panic!("Found fn without a val when creating the global state!"),
                    Some((arg_tys, ret_ty)) => {
                        assert!(arg_tys.len() == args.len());
                        let args = args.iter().zip(arg_tys.iter()).map(|(id, ty)| (*id, ty)).collect();
                        functions.insert(*f, (args, (*ret_ty).clone(), body));
                    }
                },

                Def::Struct(name, fields) => {
                    let fields: HashMap<_, _> = fields.clone().into_iter().collect();
                    structs.insert(*name, fields);
                }

                Def::Enum(name, members) => {
                    for (i, member) in members.iter().enumerate() {
                        enum_members.insert(*member, (i, members.len()));
                    }
                    let members: HashSet<_> = members.clone().into_iter().collect();
                    enums.insert(*name, members);
                }

                Def::Union(_, ctors) => {
                    for (ctor, _) in ctors {
                        union_ctors.insert(*ctor);
                    }
                }

                _ => (),
            }
        }

        SharedState { functions, symtab, structs, enums, enum_members, union_ctors, probes, reset_registers }
    }

    pub fn enum_member_from_str(&self, member: &str) -> Option<usize> {
        let member = self.symtab.get(&zencode::encode(member))?;
        self.enum_members.get(&member).map(|(pos, _)| *pos)
    }

    pub fn enum_member(&self, member: Name) -> Option<usize> {
        self.enum_members.get(&member).map(|(pos, _)| *pos)
    }
}

fn insert_instr_primops<B: BV>(
    instr: Instr<Name, B>,
    externs: &HashMap<Name, String>,
    primops: &Primops<B>,
) -> Instr<Name, B> {
    match &instr {
        Instr::Call(loc, _, f, args) => match externs.get(&f) {
            Some(name) => {
                if let Some(unop) = primops.unary.get(name) {
                    assert!(args.len() == 1);
                    Instr::PrimopUnary(loc.clone(), *unop, args[0].clone())
                } else if let Some(binop) = primops.binary.get(name) {
                    assert!(args.len() == 2);
                    Instr::PrimopBinary(loc.clone(), *binop, args[0].clone(), args[1].clone())
                } else if let Some(varop) = primops.variadic.get(name) {
                    Instr::PrimopVariadic(loc.clone(), *varop, args.clone())
                } else if name == "reg_deref" {
                    Instr::Call(loc.clone(), false, REG_DEREF, args.clone())
                } else if name == "reset_registers" {
                    Instr::Call(loc.clone(), false, RESET_REGISTERS, args.clone())
                } else {
                    // Currently we just warn when we don't have a
                    // primop. This happens for softfloat based
                    // floating point in RISC-V right now.
                    eprintln!("No primop {} ({:?})", name, f);
                    Instr::Call(loc.clone(), false, *f, args.clone())
                }
            }
            None => instr,
        },
        _ => instr,
    }
}

/// There are two ways to handle assertions in the Sail code, the
/// first being to assume that they succeed (essentially treating them
/// like assumptions in the SMT) - this is the optimistic mode. The
/// other way is to assume that they might fail, and check each
/// assertion to ensure that it can never fail - this is the
/// pessimistic mode.
pub enum AssertionMode {
    Pessimistic,
    Optimistic,
}

/// Change Calls without implementations into Primops
pub(crate) fn insert_primops<B: BV>(defs: &mut [Def<Name, B>], mode: AssertionMode) {
    let mut externs: HashMap<Name, String> = HashMap::new();
    for def in defs.iter() {
        if let Def::Extern(f, ext, _, _) = def {
            externs.insert(*f, ext.to_string());
        }
    }

    match mode {
        AssertionMode::Optimistic => externs.insert(SAIL_ASSERT, "optimistic_assert".to_string()),
        AssertionMode::Pessimistic => externs.insert(SAIL_ASSERT, "pessimistic_assert".to_string()),
    };
    externs.insert(SAIL_ASSUME, "assume".to_string());
    externs.insert(BITVECTOR_UPDATE, "bitvector_update".to_string());

    let primops = Primops::default();

    for def in defs.iter_mut() {
        match def {
            Def::Fn(f, args, body) => {
                *def = Def::Fn(
                    *f,
                    args.to_vec(),
                    body.to_vec().into_iter().map(|instr| insert_instr_primops(instr, &externs, &primops)).collect(),
                )
            }
            Def::Let(bindings, setup) => {
                *def = Def::Let(
                    bindings.clone(),
                    setup.to_vec().into_iter().map(|instr| insert_instr_primops(instr, &externs, &primops)).collect(),
                )
            }
            _ => (),
        }
    }
}

/// By default each jump or goto just contains a `usize` offset into
/// the instruction vector. This representation is efficient but hard
/// to work with, so we support mapping this representation into one
/// where any instruction can have an explicit label, and jumps point
/// to those explicit labels, and then going back to the offset based
/// representation for execution.
#[derive(Debug)]
pub enum LabeledInstr<B> {
    Labeled(usize, Instr<Name, B>),
    Unlabeled(Instr<Name, B>),
}

impl<B: BV> LabeledInstr<B> {
    fn strip(self) -> Instr<Name, B> {
        use LabeledInstr::*;
        match self {
            Labeled(_, instr) => instr,
            Unlabeled(instr) => instr,
        }
    }

    fn strip_ref(&self) -> &Instr<Name, B> {
        use LabeledInstr::*;
        match self {
            Labeled(_, instr) => instr,
            Unlabeled(instr) => instr,
        }
    }

    fn label(&self) -> Option<usize> {
        match self {
            LabeledInstr::Labeled(l, _) => Some(*l),
            LabeledInstr::Unlabeled(_) => None,
        }
    }

    fn is_labeled(&self) -> bool {
        matches!(self, LabeledInstr::Labeled(_, _))
    }

    fn is_unlabeled(&self) -> bool {
        !self.is_labeled()
    }
}

/// Rewrites an instruction sequence with implicit offset based labels
/// into a vector where the labels are explicit. Note that this just
/// adds a label to every instruction which is equal to its
/// offset. Use [prune_labels] to remove any labels which are not the
/// target of any jump or goto instruction.
pub fn label_instrs<B: BV>(mut instrs: Vec<Instr<Name, B>>) -> Vec<LabeledInstr<B>> {
    use LabeledInstr::*;
    instrs.drain(..).enumerate().map(|(i, instr)| Labeled(i, instr)).collect()
}

/// Remove labels which are not the targets of any jump or goto.
pub fn prune_labels<B: BV>(mut instrs: Vec<LabeledInstr<B>>) -> Vec<LabeledInstr<B>> {
    use LabeledInstr::*;
    let mut targets = HashSet::new();

    for instr in &instrs {
        match instr.strip_ref() {
            Instr::Goto(target) | Instr::Jump(_, target, _) => {
                targets.insert(*target);
            }
            _ => (),
        }
    }

    instrs
        .drain(..)
        .map(|instr| match instr {
            Labeled(l, instr) if targets.contains(&l) => Labeled(l, instr),
            instr => Unlabeled(instr.strip()),
        })
        .collect()
}

/// Remove the explicit labels from instructions, and go back to using
/// offset based jumps and gotos.
pub fn unlabel_instrs<B: BV>(mut instrs: Vec<LabeledInstr<B>>) -> Vec<Instr<Name, B>> {
    use LabeledInstr::*;

    let mut jump_table: HashMap<usize, usize> = HashMap::new();

    for (i, instr) in instrs.iter().enumerate() {
        match instr {
            Labeled(label, _) => {
                jump_table.insert(*label, i);
            }
            Unlabeled(_) => (),
        }
    }

    instrs
        .drain(..)
        .map(|instr| match instr.strip() {
            Instr::Jump(cond, target, loc) => {
                let new_target = jump_table.get(&target).unwrap();
                Instr::Jump(cond, *new_target, loc)
            }

            Instr::Goto(target) => {
                let new_target = jump_table.get(&target).unwrap();
                Instr::Goto(*new_target)
            }

            instr => instr,
        })
        .collect()
}

fn insert_monomorphize_instrs<B: BV>(instrs: Vec<Instr<Name, B>>, mono_fns: &HashSet<Name>) -> Vec<Instr<Name, B>> {
    use LabeledInstr::*;
    let mut new_instrs = Vec::new();

    for instr in label_instrs(instrs) {
        match instr {
            Labeled(label, Instr::Call(loc, ext, f, args)) if mono_fns.contains(&f) => {
                let mut ids = HashSet::new();
                args.iter().for_each(|exp| exp.collect_ids(&mut ids));

                if ids.is_empty() {
                    new_instrs.push(Labeled(label, Instr::Call(loc, ext, f, args)))
                } else {
                    for (i, id) in ids.iter().enumerate() {
                        if i == 0 {
                            new_instrs.push(Labeled(label, Instr::Monomorphize(*id)))
                        } else {
                            new_instrs.push(Unlabeled(Instr::Monomorphize(*id)))
                        }
                    }
                    new_instrs.push(Unlabeled(Instr::Call(loc, ext, f, args)))
                }
            }

            _ => new_instrs.push(instr),
        }
    }

    unlabel_instrs(new_instrs)
}

fn has_mono_fn<B: BV>(instrs: &[Instr<Name, B>], mono_fns: &HashSet<Name>) -> bool {
    for instr in instrs {
        match instr {
            Instr::Call(_, _, f, _) if mono_fns.contains(&f) => return true,
            _ => (),
        }
    }
    false
}

pub(crate) fn insert_monomorphize<B: BV>(defs: &mut [Def<Name, B>]) {
    let mut mono_fns = HashSet::new();
    for def in defs.iter() {
        match def {
            Def::Extern(f, ext, _, _) if ext == "monomorphize" => {
                mono_fns.insert(*f);
            }
            _ => (),
        }
    }

    for def in defs.iter_mut() {
        match def {
            Def::Fn(f, args, body) if has_mono_fn(body, &mono_fns) => {
                *def = Def::Fn(*f, args.to_vec(), insert_monomorphize_instrs(body.to_vec(), &mono_fns))
            }
            _ => (),
        }
    }
}