Expand description

Design of BLS12-381

Fixed Generators

Although any generator produced by hashing to $\mathbb{G}_1$ or $\mathbb{G}_2$ is safe to use in a cryptographic protocol, we specify some simple, fixed generators.

In order to derive these generators, we select the lexicographically smallest valid $x$-coordinate and the lexicographically smallest corresponding $y$-coordinate, and then scale the resulting point by the cofactor, such that the result is not the identity. This results in the following fixed generators:

  1. $\mathbb{G}_1$
    • $x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507$
    • $y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569$
  2. $\mathbb{G}_2$
    • $x = 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160 + 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 u$
    • $y = 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905 + 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 u$

This can be derived using the following sage script:

param = -0xd201000000010000
def r(x):
    return (x**4) - (x**2) + 1
def q(x):
    return (((x - 1) ** 2) * ((x**4) - (x**2) + 1) // 3) + x
def g1_h(x):
    return ((x-1)**2) // 3
def g2_h(x):
    return ((x**8) - (4 * (x**7)) + (5 * (x**6)) - (4 * (x**4)) + (6 * (x**3)) - (4 * (x**2)) - (4*x) + 13) // 9
q = q(param)
r = r(param)
Fq = GF(q)
ec = EllipticCurve(Fq, [0, 4])
def psqrt(v):
    assert(not v.is_zero())
    a = sqrt(v)
    b = -a
    if a < b:
        return a
    else:
        return b
for x in range(0,100):
    rhs = Fq(x)^3 + 4
    if rhs.is_square():
        y = psqrt(rhs)
        p = ec(x, y) * g1_h(param)
        if (not p.is_zero()) and (p * r).is_zero():
            print("g1 generator: {}".format(p))
            break
Fq2.<i> = GF(q^2, modulus=[1, 0, 1])
ec2 = EllipticCurve(Fq2, [0, (4 * (1 + i))])
assert(ec2.order() == (r * g2_h(param)))
for x in range(0,100):
    rhs = (Fq2(x))^3 + (4 * (1 + i))
    if rhs.is_square():
        y = psqrt(rhs)
        p = ec2(Fq2(x), y) * g2_h(param)
        if not p.is_zero() and (p * r).is_zero():
            print("g2 generator: {}".format(p))
            break

Nontrivial third root of unity

To use the fast subgroup check algorithm for $\mathbb{G_1}$ from https://eprint.iacr.org/2019/814.pdf and https://eprint.iacr.org/2021/1130, it is necessary to find a nontrivial cube root of unity β in Fp to define the endomorphism: $$(x, y) \rightarrow (\beta x, y)$$ which is equivalent to $$P \rightarrow \lambda P$$ where $\lambda$, a nontrivial cube root of unity in Fr, satisfies $\lambda^2 + \lambda +1 = 0 \pmod{r}.

$$\beta = 793479390729215512621379701633421447060886740281060493010456487427281649075476305620758731620350$$ can be derived using the following sage commands after running the above sage script:

# Prints the given field element in Montgomery form.
def print_fq(a):
    R = 1 << 384
    tmp = ZZ(Fq(a*R))
    while tmp > 0:
        print("0x{:_x}, ".format(tmp % (1 << 64)))
        tmp >>= 64
β = (Fq.multiplicative_generator() ** ((q-1)/3))
print_fq(β)

Psi

To use the fast subgroup check algorithm for $\mathbb{G_2}$ from https://eprint.iacr.org/2019/814.pdf and https://eprint.iacr.org/2021/1130, it is necessary to find the endomorphism:

$$(x, y, z) \rightarrow (x^q \psi_x, y^q \psi_y, z^q)$$

where:

  1. $\psi_x = 1 / ((i+1) ^ ((q-1)/3)) \in \mathbb{F}_{q^2}$, and
  2. $\psi_y = 1 / ((i+1) ^ ((q-1)/2)) \in \mathbb{F}_{q^2}$

can be derived using the following sage commands after running the above script and commands:

psi_x = (1/((i+1)**((q-1)/3)))
psi_y = (1/((i+1)**((q-1)/2)))
print_fq(psi_x.polynomial().coefficients()[0])
print_fq(psi_y.polynomial().coefficients()[0])
print_fq(psi_y.polynomial().coefficients()[1])