1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//! A [blake3](https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3)-based
//! merkle (hash) tree implementation for superfast trees ⚡
//!
//! # Example
//!
//! ```rust
//! use irkle::Tree;
//!
//! fn main() {
//!     println!("{:#?}", Tree::new(vec!["hello", "there"]));
//! }
//! ```
//!
//! # Installation
//!
//! Simply add the following to your `Cargo.toml` file:
//!
//! ```toml
//! [depedencies]
//! irkle = "0.1"
//! ```

use blake3::{self, Hash};
use std::rc::Rc;

/// Trait for running methods on any abstract kind of node, such as hash verification
/// or just getting the hash
pub trait NodeMethod<T: AsRef<[u8]>> {
    /// Gets the [blake3]-based [Hash] for trait implementation, just call on any
    /// [Node], [Data] or [NodeType] like so: `item.get_hash()`. Typically all
    /// this method will do is get the `self.hash` but this can be used to adapt
    /// a broader [NodeType]
    fn get_hash(&self) -> Hash;

    /// Verifies the node down through recursion, providing a high-level
    /// checking/verification method
    ///
    /// If this fails, it will return the expected hash and the found hash where
    /// this hash failed at; this is formatted as `(expected_hash, found_node)`
    fn verify(&self) -> Result<(), (Hash, Hash)>;
}

/// A merkle tree
///
/// # Example
///
/// ```rs
/// use irkle::Tree;
///
/// fn main() {
///     println!("{:#?}", Tree::new(vec!["hello", "there"]));
/// }
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Tree<T: AsRef<[u8]>> {
    /// Type of node contained inside the tree or represents an empty tree
    pub inner: NodeType<T>,
}

impl<T: AsRef<[u8]>> Tree<T> {
    /// Creates a new [Tree] based off of data supplied in `data`
    pub fn new<D: IntoIterator<Item = T>>(datapoints: D) -> Self {
        let mut data_nodes: Vec<Data<T>> = datapoints.into_iter().map(|d| Data::new(d)).collect();

        match data_nodes.len() {
            0 => panic!("Tree was given no datapoints and a merkle tree cannot be empty!"),
            1 => Self {
                inner: NodeType::Data(data_nodes.remove(0)),
            },
            _ => {
                /// Makes all levels of new nodes recursively from given
                /// originating [NodeType]s
                fn generate_nodes<T: AsRef<[u8]>, N: Into<NodeType<T>>>(
                    node_types: Vec<N>,
                ) -> NodeType<T> {
                    let mut output: Vec<NodeType<T>> = vec![];
                    let mut left_buf: Option<NodeType<T>> = None;

                    for node_type in node_types {
                        match left_buf {
                            Some(_) => output
                                .push(Node::new(left_buf.take().unwrap(), node_type.into()).into()),
                            None => left_buf = Some(node_type.into()),
                        }
                    }

                    output.extend(left_buf);

                    if output.len() == 1 {
                        output.remove(0)
                    } else {
                        generate_nodes(output)
                    }
                }

                Self {
                    inner: generate_nodes(data_nodes),
                }
            }
        }
    }
}

impl<T: AsRef<[u8]>> NodeMethod<T> for Tree<T> {
    fn get_hash(&self) -> Hash {
        match &self.inner {
            NodeType::Node(node) => node.hash,
            NodeType::Data(node) => node.hash,
        }
    }

    fn verify(&self) -> Result<(), (Hash, Hash)> {
        self.inner.verify()
    }
}

/// A middle-layer node, containing two nodes underneith that is of some [NodeType]
/// variation
#[derive(Debug, Clone, PartialEq)]
pub struct Node<T: AsRef<[u8]>> {
    pub hash: Hash,
    pub left: Rc<NodeType<T>>,
    pub right: Rc<NodeType<T>>,
}

impl<T: AsRef<[u8]>> Node<T> {
    /// Creates a new [Node] from nodes below
    pub fn new<N: Into<NodeType<T>>>(left: N, right: N) -> Self {
        let left_into = left.into();
        let right_into = right.into();

        Self {
            hash: hash_lr(&left_into, &right_into),
            left: Rc::new(left_into),
            right: Rc::new(right_into),
        }
    }
}

impl<T: AsRef<[u8]>> NodeMethod<T> for Node<T> {
    fn get_hash(&self) -> Hash {
        self.hash
    }

    fn verify(&self) -> Result<(), (Hash, Hash)> {
        self.left.verify()?;
        self.right.verify()?;

        let found_hash = hash_lr(&self.left, &self.right);

        if self.hash == found_hash {
            Ok(())
        } else {
            Err((found_hash, self.hash))
        }
    }
}

/// The final datablock, containing the data needed
#[derive(Debug, Clone, PartialEq)]
pub struct Data<T: AsRef<[u8]>> {
    pub hash: Hash,
    pub data: T,
}

impl<T: AsRef<[u8]>> Data<T> {
    /// Creates a new [Data] from given `data`
    pub fn new<D: Into<T>>(data: D) -> Self {
        let data_into = data.into();

        Self {
            hash: blake3::hash(data_into.as_ref()),
            data: data_into.into(),
        }
    }
}

impl<T: AsRef<[u8]>> NodeMethod<T> for Data<T> {
    fn get_hash(&self) -> Hash {
        self.hash
    }

    fn verify(&self) -> Result<(), (Hash, Hash)> {
        let found_hash = blake3::hash(self.data.as_ref());

        if self.hash == found_hash {
            Ok(())
        } else {
            Err((found_hash, self.hash))
        }
    }
}

/// Types of node that may be children
#[derive(Debug, Clone, PartialEq)]
pub enum NodeType<T: AsRef<[u8]>> {
    Node(Node<T>),
    Data(Data<T>),
}

impl<T: AsRef<[u8]>> NodeMethod<T> for NodeType<T> {
    fn get_hash(&self) -> Hash {
        match self {
            NodeType::Node(inner) => inner.hash,
            NodeType::Data(inner) => inner.hash,
        }
    }

    fn verify(&self) -> Result<(), (Hash, Hash)> {
        match self {
            NodeType::Node(inner) => inner.verify(),
            NodeType::Data(inner) => inner.verify(),
        }
    }
}

impl<T: AsRef<[u8]>> From<T> for NodeType<T> {
    /// Similar to the `impl<T: AsRef<[u8]>> From<Data<T>> for NodeType<T>` impl
    /// for [NodeType] but assumes raw input can also be a [Data]
    fn from(data: T) -> Self {
        NodeType::Data(Data::new(data))
    }
}

impl<T: AsRef<[u8]>> From<Data<T>> for NodeType<T> {
    fn from(data: Data<T>) -> Self {
        NodeType::Data(data)
    }
}

impl<T: AsRef<[u8]>> From<Node<T>> for NodeType<T> {
    fn from(node: Node<T>) -> Self {
        NodeType::Node(node)
    }
}

/// Hashes left and right sides of a [NodeType], used for middle [Node]s
fn hash_lr<T: AsRef<[u8]>>(left: &NodeType<T>, right: &NodeType<T>) -> Hash {
    let mut hasher = blake3::Hasher::new();

    hasher.update(left.get_hash().as_bytes());
    hasher.update(right.get_hash().as_bytes());

    hasher.finalize()
}

#[cfg(test)]
mod tests {
    use super::*;

    const TEST_DATA: &str = "hello";

    #[test]
    fn hash_lr_check() {
        let data: Data<&str> = Data::new(TEST_DATA);
        let expected = blake3::hash(
            &[
                &data.get_hash().as_bytes()[..],
                &data.get_hash().as_bytes()[..],
            ]
            .concat(),
        );

        assert_eq!(
            hash_lr(&NodeType::from(data.clone()), &NodeType::from(data)),
            expected
        )
    }

    #[test]
    fn tree_new_two() {
        assert_eq!(
            Tree::new(vec!["left one", "right one"]),
            Tree {
                inner: NodeType::Node(Node::new(Data::new("left one"), Data::new("right one")))
            }
        )
    }

    #[test]
    fn tree_new_odd() {
        let left = NodeType::Node(Node::new(Data::new("this"), Data::new("is")));
        let right = NodeType::Data(Data::new("odd"));

        assert_eq!(
            Tree::new(vec!["this", "is", "odd"]),
            Tree {
                inner: NodeType::Node(Node::new(left, right))
            }
        )
    }

    #[test]
    fn tree_new_four() {
        let bottom_left: Node<&str> = Node::new("hello", "there");
        let bottom_right: Node<&str> = Node::new("cool", "person");

        let hash = blake3::hash(
            &[
                &bottom_left.hash.as_bytes()[..],
                &bottom_right.hash.as_bytes()[..],
            ]
            .concat(),
        );

        let node = NodeType::Node(Node {
            hash,
            left: Rc::new(NodeType::Node(bottom_left)),
            right: Rc::new(NodeType::Node(bottom_right)),
        });

        assert_eq!(
            Tree::new(vec!["hello", "there", "cool", "person"]),
            Tree { inner: node }
        )
    }

    #[test]
    fn node_to_node_type() {
        let inner: Node<&str> = Node::new("", "").into();
        assert_eq!(NodeType::from(inner.clone()), NodeType::Node(inner))
    }

    #[test]
    fn data_to_node_type() {
        let inner: Data<&str> = Data::new("");
        assert_eq!(NodeType::from(inner.clone()), NodeType::Data(inner))
    }

    #[test]
    fn node_get_hash() {
        let node: Node<&str> = Node::new(TEST_DATA, TEST_DATA);

        assert_eq!(
            node.get_hash(),
            blake3::hash(
                &[
                    &blake3::hash(TEST_DATA.as_bytes()).as_bytes()[..],
                    &blake3::hash(TEST_DATA.as_bytes()).as_bytes()[..]
                ]
                .concat()
            )
        );
    }

    #[test]
    fn data_get_hash() {
        let data: Data<&str> = Data::new(TEST_DATA);
        assert_eq!(data.get_hash(), blake3::hash(TEST_DATA.as_bytes()));
    }

    #[test]
    #[should_panic]
    fn empty_tree() {
        let strings: Vec<String> = vec![];
        Tree::new(strings);
    }

    #[test]
    fn data_verification() {
        let mut test_struct: Data<&str> = Data::new(TEST_DATA);
        assert!(test_struct.verify().is_ok());

        test_struct.hash = blake3::hash(b"fknrejnfjrenf");
        assert!(test_struct.verify().is_err());
    }

    // TODO: more verification tests
}