1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use crate::binary::raw_binary_writer::{RawBinaryWriter, RawBinaryWriterBuilder};
use crate::constants::v1_0::system_symbol_ids;
use crate::raw_symbol_token_ref::{AsRawSymbolTokenRef, RawSymbolTokenRef};
use crate::result::{illegal_operation, IonResult};
use crate::types::{Decimal, Int, IonType, SymbolId, Timestamp};
use crate::writer::IonWriter;
use crate::SymbolTable;
use delegate::delegate;
use std::io::Write;

pub struct BinaryWriterBuilder {
    // Nothing yet
}

impl BinaryWriterBuilder {
    pub fn new() -> Self {
        BinaryWriterBuilder {}
    }

    pub fn build<W: Write>(self, sink: W) -> IonResult<BinaryWriter<W>> {
        let mut raw_writer = RawBinaryWriterBuilder::new().build(sink)?;
        let symbol_table_writer = RawBinaryWriterBuilder::new().build(Vec::new())?;
        // TODO: Track whether we've written an IVM and emit it at flush time instead
        raw_writer.write_ion_version_marker(1, 0)?;
        let binary_writer = BinaryWriter {
            raw_writer,
            symbol_table: Default::default(),
            num_pending_symbols: 0,
            symbol_table_writer,
        };
        Ok(binary_writer)
    }
}

impl Default for BinaryWriterBuilder {
    fn default() -> Self {
        BinaryWriterBuilder::new()
    }
}

/**
 * An application-level binary Ion writer. This writer manages a symbol table and so can convert
 * symbol IDs to their corresponding text.
 */
pub struct BinaryWriter<W: Write> {
    raw_writer: RawBinaryWriter<W>,
    symbol_table: SymbolTable,
    // The number of symbols that have been added to the in-memory symbol table but
    // whose definitions have not yet been written to the output stream.
    num_pending_symbols: usize,
    // The BinaryWriter uses the `symbol_table_writer` to encode local symbol tables to a buffer
    // and then flush them to output before flushing the contents of the `raw_writer`. This guarantees
    // that any symbols referenced in the `raw_writer`'s contents will be defined in the Ion stream
    // before the reference appears.
    symbol_table_writer: RawBinaryWriter<Vec<u8>>,
}

impl<W: Write> BinaryWriter<W> {
    fn get_or_create_symbol_id(&mut self, text: &str) -> SymbolId {
        if let Some(symbol_id) = self.symbol_table.sid_for(&text) {
            // If the provided text is in the symbol table, use the associated symbol ID...
            symbol_id
        } else {
            // ...otherwise, add it to the symbol table and return the new symbol ID.
            self.num_pending_symbols += 1;
            self.symbol_table.intern(text)
        }
    }

    fn write_symbol_table_for_pending_symbols(&mut self) -> IonResult<()> {
        let pending_symbols_starting_index = self.symbol_table.len() - self.num_pending_symbols;
        let pending_symbols = self
            .symbol_table
            .symbols_tail(pending_symbols_starting_index);

        self.symbol_table_writer
            .add_annotation(system_symbol_ids::ION_SYMBOL_TABLE);
        self.symbol_table_writer.step_in(IonType::Struct)?;

        self.symbol_table_writer
            .set_field_name(system_symbol_ids::IMPORTS);
        self.symbol_table_writer
            .write_symbol(system_symbol_ids::ION_SYMBOL_TABLE)?;

        self.symbol_table_writer
            .set_field_name(system_symbol_ids::SYMBOLS);
        self.symbol_table_writer.step_in(IonType::List)?;
        for symbol in pending_symbols {
            match symbol.text() {
                Some(text) => self.symbol_table_writer.write_string(text),
                None => self.symbol_table_writer.write_null(IonType::Null),
            }?;
        }
        self.symbol_table_writer.step_out()?; // End symbols list

        self.symbol_table_writer.step_out()?; // End $ion_symbol_table::{...}
        self.symbol_table_writer.flush()?;

        // Write the symbol_table_writer's encoded bytes to the raw_writer's output
        let bytes = &self.symbol_table_writer.output()[..];
        self.raw_writer.output_mut().write_all(bytes)?;
        self.symbol_table_writer.output_mut().clear();

        Ok(())
    }
}

impl<W: Write> IonWriter for BinaryWriter<W> {
    type Output = W;

    fn supports_text_symbol_tokens(&self) -> bool {
        // The BinaryWriter can always write text field names, annotations, and symbols
        // after first adding the provided text to the symbol table.
        true
    }

    fn set_annotations<I, A>(&mut self, annotations: I)
    where
        A: AsRawSymbolTokenRef,
        I: IntoIterator<Item = A>,
    {
        for annotation in annotations {
            let symbol_id = match annotation.as_raw_symbol_token_ref() {
                RawSymbolTokenRef::SymbolId(symbol_id) => {
                    if self.symbol_table.sid_is_valid(symbol_id) {
                        symbol_id
                    } else {
                        panic!("Cannot set symbol ID ${symbol_id} as annotation. It is undefined.");
                    }
                }
                RawSymbolTokenRef::Text(text) => self.get_or_create_symbol_id(text),
            };
            self.raw_writer.add_annotation(symbol_id);
        }
    }

    fn write_symbol<A: AsRawSymbolTokenRef>(&mut self, value: A) -> IonResult<()> {
        let symbol_id = match value.as_raw_symbol_token_ref() {
            RawSymbolTokenRef::SymbolId(symbol_id) => {
                if self.symbol_table.sid_is_valid(symbol_id) {
                    symbol_id
                } else {
                    return illegal_operation(format!(
                        "Cannot write symbol ID ${symbol_id} as a symbol value. It is undefined."
                    ));
                }
            }
            RawSymbolTokenRef::Text(text) => self.get_or_create_symbol_id(text),
        };
        self.raw_writer.write_symbol(symbol_id)
    }

    fn set_field_name<A: AsRawSymbolTokenRef>(&mut self, name: A) {
        let text = match name.as_raw_symbol_token_ref() {
            RawSymbolTokenRef::SymbolId(symbol_id) => {
                if self.symbol_table.sid_is_valid(symbol_id) {
                    symbol_id
                } else {
                    panic!("Cannot set symbol ID ${symbol_id} as field name. It is undefined.");
                }
            }
            RawSymbolTokenRef::Text(text) => self.get_or_create_symbol_id(text),
        };
        self.raw_writer.set_field_name(text);
    }

    fn flush(&mut self) -> IonResult<()> {
        // Check to see if there are any pending symbols.
        if self.num_pending_symbols > 0 {
            self.write_symbol_table_for_pending_symbols()?;
            self.num_pending_symbols = 0;
        }
        self.raw_writer.flush()
    }

    delegate! {
        to self.raw_writer {
            fn ion_version(&self) -> (u8, u8);
            fn write_ion_version_marker(&mut self, major: u8, minor: u8) -> IonResult<()>;
            fn write_null(&mut self, ion_type: IonType) -> IonResult<()>;
            fn write_bool(&mut self, value: bool) -> IonResult<()>;
            fn write_i64(&mut self, value: i64) -> IonResult<()>;
            fn write_int(&mut self, value: &Int) -> IonResult<()>;
            fn write_f32(&mut self, value: f32) -> IonResult<()>;
            fn write_f64(&mut self, value: f64) -> IonResult<()>;
            fn write_decimal(&mut self, value: &Decimal) -> IonResult<()>;
            fn write_timestamp(&mut self, value: &Timestamp) -> IonResult<()>;
            fn write_string<A: AsRef<str>>(&mut self, value: A) -> IonResult<()>;
            fn write_clob<A: AsRef<[u8]>>(&mut self, value: A) -> IonResult<()>;
            fn write_blob<A: AsRef<[u8]>>(&mut self, value: A) -> IonResult<()>;
            fn step_in(&mut self, container_type: IonType) -> IonResult<()>;
            fn parent_type(&self) -> Option<IonType>;
            fn depth(&self) -> usize;
            fn step_out(&mut self) -> IonResult<()>;
            fn output(&self) -> &Self::Output;
            fn output_mut(&mut self) -> &mut Self::Output;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::reader::ReaderBuilder;
    use crate::stream_reader::IonReader;

    use crate::StreamItem::Value;

    #[test]
    fn intern_field_names() -> IonResult<()> {
        let mut buffer = Vec::new();
        let mut binary_writer = BinaryWriterBuilder::new().build(&mut buffer)?;
        binary_writer.step_in(IonType::Struct)?;
        binary_writer.set_field_name("foo");
        binary_writer.write_symbol("bar")?;
        binary_writer.step_out()?;
        binary_writer.flush()?;

        let mut reader = ReaderBuilder::new().build(buffer)?;
        assert_eq!(Value(IonType::Struct), reader.next()?);
        reader.step_in()?;
        assert_eq!(Value(IonType::Symbol), reader.next()?);
        assert_eq!("foo", reader.field_name()?);
        assert_eq!("bar", reader.read_symbol()?.text_or_error()?);

        Ok(())
    }

    #[test]
    fn intern_annotations() -> IonResult<()> {
        let mut buffer = Vec::new();
        let mut binary_writer = BinaryWriterBuilder::new().build(&mut buffer)?;
        binary_writer.set_annotations(["foo", "bar"]);
        binary_writer.write_i64(5)?;
        binary_writer.flush()?;

        let mut reader = ReaderBuilder::new().build(buffer)?;
        assert_eq!(Value(IonType::Int), reader.next()?);
        let mut annotations = reader.annotations();
        assert_eq!("foo", annotations.next().unwrap()?);
        assert_eq!("bar", annotations.next().unwrap()?);

        Ok(())
    }

    #[test]
    fn intern_symbols() -> IonResult<()> {
        let mut buffer = Vec::new();
        let mut binary_writer = BinaryWriterBuilder::new().build(&mut buffer)?;
        binary_writer.write_symbol("foo")?;
        binary_writer.write_symbol("bar")?;
        binary_writer.write_symbol("baz")?;
        binary_writer.flush()?;

        let mut reader = ReaderBuilder::new().build(buffer)?;
        assert_eq!(Value(IonType::Symbol), reader.next()?);
        assert_eq!("foo", reader.read_symbol()?);
        assert_eq!(Value(IonType::Symbol), reader.next()?);
        assert_eq!("bar", reader.read_symbol()?);
        assert_eq!(Value(IonType::Symbol), reader.next()?);
        assert_eq!("baz", reader.read_symbol()?);

        Ok(())
    }
}