1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
//! `imxrt-iomuxc` is a library for configuring i.MX RT processor pads. Using its API, you can
//!
//! - configure a pad for a peripheral, and specify its electrical properties.
//! - manage pad objects as ownable resources.
//! - statically constrain pads to work with peripherals.
//!
//! As an end user, you're expected to use `imxrt-iomuxc` through a hardware abstraction layer
//! (HAL) or board support package (BSP). Specifically, you should have access to pad structs and
//! objects, and you should be able to configure pads with the [`configure`] APIs.
//!
//! As a library developer who writes HALs or hardware drivers, you may use the `imxrt-iomuxc`
//! pin traits in your APIs to statically ensure pad-peripheral compatibility. See the design
//! guidance for examples on how to achieve this.
//!
//! # Definitions
//!
//! A 'pad' is the physical input / output on an i.MX RT processor.
//! Pads may be configured for various functions. A pad may act as a UART pin, an I2C
//! pin, or other types of pins. A 'pin' is a pad that's configured for a functional
//! purpose. The traits let us say which pad can be used for which peripheral pin.
//!
//! # Features
//!
//! Processor pads, and their pin implementations, are enabled with optional feature flags. For
//! example, the `imxrt1060` feature flag exposes an `imxrt1060` module that defines all i.MX
//! RT 1060 processor pads. Users and integrators are responsible for making sure an enabled
//! feature makes sense for their system.
//!
//! # Design Guidance
//!
//! For recommendations on how you can use these traits, see the module-level documentation. The
//! rest of this section describes general guidance for designing APIs with these traits.
//!
//! ## Matching pads and peripherals
//!
//! The pin traits allow you to restrict the pads and peripherals that comprise a peripheral. This
//! lets you catch invalid peripheral configurations at compile time.
//!
//! In the example below, we implement a hypothetical `lpuart_new` function, which is responsible
//! for preparing a LPUART peripheral. To properly configure the peripheral, we need the two
//! pads that represent a peripheral's TX and RX pins. The implementation will use the
//! `imxrt_iomuxc::lpuart::prepare()` function to prepare the pins.
//!
//! Note the trait bounds on `lpuart_new`. The usage requires that
//!
//! - the user provides one TX and one RX pin
//! - the modules for each pin match
//!
//! ```no_run
//! use imxrt_iomuxc as iomuxc;
//! use iomuxc::lpuart::{Pin, Tx, Rx};
//!
//! # struct Lpuart<const N: u8>;
//! /// Creates a UART peripheral from the TX and RX pads
//! fn lpuart_new<T, R, const N: u8>(mut tx: T, mut rx: R) -> Lpuart<N>
//! where
//!     T: Pin<Direction = Tx, Module = iomuxc::consts::Const<N>>,
//!     R: Pin<Direction = Rx, Module = <T as Pin>::Module>,
//! {
//!     iomuxc::lpuart::prepare(&mut tx);
//!     iomuxc::lpuart::prepare(&mut rx);
//!     // Prepare the rest of the peripheral, and return it...
//!     # Lpuart
//! }
//!
//! # let gpio_ad_b0_13 = unsafe { imxrt_iomuxc::imxrt1060::gpio_ad_b0::GPIO_AD_B0_13::new() };
//! # let gpio_ad_b0_12 = unsafe { imxrt_iomuxc::imxrt1060::gpio_ad_b0::GPIO_AD_B0_12::new() };
//! // GPIO_AD_B0_13 and GPIO_AD_B0_12 are a suitable pair of UART pins
//! lpuart_new(gpio_ad_b0_12, gpio_ad_b0_13);
//! ```
//!
//! Specifically, the trait bounds guard against non-UART pins:
//!
//! ```compile_fail
//! # use imxrt_iomuxc as iomuxc;
//! # use iomuxc::lpuart::{Pin, Tx, Rx};
//! # struct Lpuart<const N: u8>;
//! # fn lpuart_new<T, R, const N: u8>(mut tx: T, mut rx: R) -> Lpuart<N>
//! # where
//! #     T: Pin<Direction = Tx, Module = iomuxc::consts::Const<N>>,
//! #     R: Pin<Direction = Rx, Module = <T as Pin>::Module>,
//! # {
//! #     iomuxc::lpuart::prepare(&mut tx);
//! #     iomuxc::lpuart::prepare(&mut rx);
//! #     Lpuart
//! # }
//! # let gpio_ad_b0_10 = unsafe { imxrt_iomuxc::imxrt1060::gpio_ad_b0::GPIO_AD_B0_10::new() };
//! # let gpio_ad_b0_11 = unsafe { imxrt_iomuxc::imxrt1060::gpio_ad_b0::GPIO_AD_B0_11::new() };
//! // Neither pad is a valid UART pin
//! lpuart_new(gpio_ad_b0_10, gpio_ad_b0_11);
//! ```
//!
//! It also guards against mismatched UART pins:
//!
//! ```compile_fail
//! # use imxrt_iomuxc as iomuxc;
//! # use iomuxc::lpuart::{Pin, Tx, Rx};
//! # struct Lpuart<const N: u8>;
//! # fn lpuart_new<T, R, const N: u8>(mut tx: T, mut rx: R) -> Lpuart<N>
//! # where
//! #     T: Pin<Direction = Tx, Module = iomuxc::consts::Const<N>>,
//! #     R: Pin<Direction = Rx, Module = <T as Pin>::Module>,
//! # {
//! #     iomuxc::lpuart::prepare(&mut tx);
//! #     iomuxc::lpuart::prepare(&mut rx);
//! #     Lpuart
//! # }
//! # let gpio_ad_b0_13 = unsafe { imxrt_iomuxc::imxrt1060::gpio_ad_b0::GPIO_AD_B0_13::new() };
//! # let gpio_ad_b1_02 = unsafe { imxrt_iomuxc::imxrt1060::gpio_ad_b1::GPIO_AD_B1_02::new() };
//! // GPIO_AD_B1_02 is a UART2 TX pin, but GPIO_AD_B0_13 is a UART1 RX pin
//! lpuart_new(gpio_ad_b1_02, gpio_ad_b0_13);
//! ```
//!
//! ## Type-Erased Pads
//!
//! At the expense of requiring `unsafe`, users may favor type-erased pads over strongly-typed pads.
//! When creating APIs that consume strongly-typed pads, or pads that conform to peripheral pin interfaces,
//! consider supporting an `unsafe` API to create the peripheral without requiring the strongly-typed pads.
//! The API will expect that the user is responsible for manually configuring the type-erased pad.
//!
//! ```no_run
//! use imxrt_iomuxc::{self as iomuxc, ErasedPad, lpuart::{Pin, Tx, Rx}};
//! # use imxrt_iomuxc::imxrt1060::gpio_ad_b0::{GPIO_AD_B0_13, GPIO_AD_B0_12};
//! # pub struct Lpuart<const N: u8>;
//!
//! impl<const N: u8> Lpuart<N> {
//!     pub fn new<T, R>(mut tx: T, mut rx: R, /* ... */) -> Self
//!     where
//!         T: Pin<Direction = Tx, Module = iomuxc::consts::Const<N>>,
//!         R: Pin<Direction = Rx, Module = <T as Pin>::Module>,
//!     {
//!         imxrt_iomuxc::lpuart::prepare(&mut tx);
//!         imxrt_iomuxc::lpuart::prepare(&mut rx);
//!         // ...
//!         # Lpuart
//!     }
//!
//!     pub fn with_erased_pads(tx: ErasedPad, rx: ErasedPad, /* ... */) -> Self {
//!         // ...
//!         # Lpuart
//!     }
//! }
//!
//! // Preferred: create a LPUART peripheral with strongly-typed pads...
//! let gpio_ad_b0_13 = unsafe { GPIO_AD_B0_13::new() };
//! let gpio_ad_b0_12 = unsafe { GPIO_AD_B0_12::new() };
//! let uart1 = Lpuart::<1>::new(gpio_ad_b0_12, gpio_ad_b0_13);
//!
//! // Optional: create a LPUART peripheral from type-erased pads...
//! let gpio_ad_b0_13 = unsafe { GPIO_AD_B0_13::new() };
//! let gpio_ad_b0_12 = unsafe { GPIO_AD_B0_12::new() };
//!
//! let mut rx_pad = gpio_ad_b0_13.erase();
//! let mut tx_pad = gpio_ad_b0_12.erase();
//!
//! // User is responsible for configuring the pad,
//! // since we can't call `prepare()` on the pad...
//! unsafe {
//!     // Daisy registers and values aren't attached
//!     // to erased pads, so we have to reference this
//!     // manually.
//!     <GPIO_AD_B0_13 as imxrt_iomuxc::lpuart::Pin>::DAISY.map(|daisy| daisy.write());
//!     <GPIO_AD_B0_12 as imxrt_iomuxc::lpuart::Pin>::DAISY.map(|daisy| daisy.write());
//! }
//! imxrt_iomuxc::alternate(&mut tx_pad, 2);
//! imxrt_iomuxc::alternate(&mut rx_pad, 2);
//! imxrt_iomuxc::clear_sion(&mut tx_pad);
//! imxrt_iomuxc::clear_sion(&mut rx_pad);
//! // Pads are configured for LPUART settings
//! let uart1 = Lpuart::<1>::with_erased_pads(tx_pad, rx_pad);
//! ```

#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]

#[macro_use]
pub mod adc;
mod config;
#[macro_use]
pub mod flexcan;
#[macro_use]
pub mod flexio;
#[macro_use]
pub mod flexpwm;
#[macro_use]
pub mod lpi2c;
#[macro_use]
pub mod lpspi;
#[macro_use]
pub mod lpuart;
#[macro_use]
pub mod sai;
#[macro_use]
pub mod usdhc;

use core::ptr;

pub use config::{
    configure, Config, DriveStrength, Hysteresis, OpenDrain, PullKeeper, SlewRate, Speed,
};

#[allow(deprecated)]
pub use config::{PullKeep, PullKeepSelect, PullUpDown};

/// Re-export of top-level components, without the chip-specific modules.
///
/// `prelude` is to help HAL implementors re-export the `imxrt-iomuxc` APIs
/// as a single module.
///
/// ```
/// // Your crate's module:
/// pub mod iomuxc {
///     // Re-export common modules and types
///     pub use imxrt_iomuxc::prelude::*;
///     // Conditionally re-export chip-specific pads
///     #[cfg(feature = "imxrt1060")]
///     pub use imxrt_iomuxc::imxrt1060::*;
/// }
/// ```
pub mod prelude {
    pub use crate::config::{
        configure, Config, DriveStrength, Hysteresis, OpenDrain, PullKeeper, SlewRate, Speed,
    };

    #[allow(deprecated)]
    pub use crate::config::{PullKeep, PullKeepSelect, PullUpDown};

    pub use crate::{
        adc, alternate, ccm, clear_sion, consts, flexcan, flexio, flexpwm, gpio, lpi2c, lpspi,
        lpuart, sai, set_sion, usdhc, Daisy, ErasedPad, Pad, WrongPadError,
    };
}

/// Type-level constants and traits.
pub mod consts {
    /// A type-level constant.
    ///
    /// You can pattern match these in trait constraints. See the package documentation for
    /// examples.
    #[derive(Debug)]
    pub enum Const<const N: u8> {}
    #[doc(hidden)]
    pub trait Unsigned {
        const USIZE: usize;
        fn to_usize() -> usize {
            Self::USIZE
        }
    }
    impl<const N: u8> Unsigned for Const<N> {
        const USIZE: usize = N as usize;
    }
    macro_rules! ux {
        ($($Ux:ident => $N:literal,)+) => {
            $(pub type $Ux = Const<$N>;)+
        };
    }
    ux! {
        U0 => 0, U1 => 1, U2 => 2, U3 => 3, U4 => 4,
        U5 => 5, U6 => 6, U7 => 7, U8 => 8, U9 => 9,
        U10 => 10, U11 => 11, U12 => 12, U13 => 13, U14 => 14,
        U15 => 15, U16 => 16, U17 => 17, U18 => 18, U19 => 19,
        U20 => 20, U21 => 21, U22 => 22, U23 => 23, U24 => 24,
        U25 => 25, U26 => 26, U27 => 27, U28 => 28, U29 => 29,
        U30 => 30, U31 => 31, U32 => 32, U33 => 33, U34 => 34,
        U35 => 35, U36 => 36, U37 => 37, U38 => 38, U39 => 39,
        U40 => 40, U41 => 41,
    }
}

#[cfg(feature = "imxrt1010")]
#[cfg_attr(docsrs, doc(cfg(feature = "imxrt1010")))]
pub mod imxrt1010;

#[cfg(feature = "imxrt1020")]
#[cfg_attr(docsrs, doc(cfg(feature = "imxrt1020")))]
pub mod imxrt1020;

#[cfg(feature = "imxrt1060")]
#[cfg_attr(docsrs, doc(cfg(feature = "imxrt1060")))]
pub mod imxrt1060;

#[cfg(feature = "imxrt1170")]
#[cfg_attr(docsrs, doc(cfg(feature = "imxrt1170")))]
pub mod imxrt1170;

/// An IOMUXC-capable pad which can support I/O multiplexing
///
/// # Safety
///
/// This should only be implemented on types that return pointers to static
/// memory.
pub unsafe trait Iomuxc: private::Sealed {
    /// Returns the absolute address of the multiplex register.
    #[doc(hidden)]
    fn mux(&mut self) -> *mut u32;
    /// Returns the absolute address of the pad configuration register.
    #[doc(hidden)]
    fn pad(&mut self) -> *mut u32;
}

mod private {
    pub trait Sealed {}
}

const SION_BIT: u32 = 1 << 4;

/// Set the SION bit in a pad's MUX register
///
/// Users who are using strongly-typed pads should not call `set_sion()` directly.
/// Instead, `set_sion()` will be used in a peripheral's `prepare()` function as needed,
/// so that you don't have to call it.
///
/// However, you should use `set_sion()` if you're using any type-erased pads, since those
/// pads cannot be used with a peripheral's `prepare()` function.
#[inline(always)]
pub fn set_sion<I: Iomuxc>(pad: &mut I) {
    // Safety:
    //
    // Pointer reads and writes are unsafe. But, because we control
    // all IOMUXC implementations, we know that the returned pointers
    // are vaild, aligned, and initialized (MMIO memory).
    //
    // The interface design ensures that all pads, type I, are unique
    // owners of MMIO memory. Users would have to use unsafe code to violate
    // that guarantee.
    //
    // By taking a mutable reference, the caller has to ensure atomicity of this
    // read-modify-write operation (or, violate the requirement with more unsafe
    // code).
    unsafe {
        let mut mux = ptr::read_volatile(pad.mux());
        mux |= SION_BIT;
        ptr::write_volatile(pad.mux(), mux);
    }
}

/// Clear the SION bit in a pad's MUX register
///
/// Users who are using strongly-typed pads should not call `clear_sion()` directly.
/// Instead, `clear_sion()` will be used in a peripheral's `prepare()` function as needed,
/// so that you don't have to call it.
///
/// However, you should use `clear_sion()` if you're using any type-erased pads, since those
/// pads cannot be used with a peripheral's `prepare()` function.
#[inline(always)]
pub fn clear_sion<I: Iomuxc>(pad: &mut I) {
    // Safety: same justification as set_sion
    unsafe {
        let mut mux = ptr::read_volatile(pad.mux());
        mux &= !SION_BIT;
        ptr::write_volatile(pad.mux(), mux);
    }
}

/// Set an alternate value for the pad
///
/// Users who are using strongly-typed pads should not call `alternate()` directly.
/// Instead, `alternate()` will be used in a peripheral's `prepare()` function as needed,
/// so that you don't have to call it.
///
/// However, you should use `alternate()` if you're using any type-erased pads, since those
/// pads cannot be used with a peripheral's `prepare()` function.
#[inline(always)]
pub fn alternate<I: Iomuxc>(pad: &mut I, alt: u32) {
    const ALT_MASK: u32 = 0b1111;
    // Safety: same justification as set_sion. Argument extends to
    // pad values and alternate values.
    unsafe {
        let mut mux = ptr::read_volatile(pad.mux());
        mux = (mux & !ALT_MASK) | (alt & ALT_MASK);
        ptr::write_volatile(pad.mux(), mux);
    }
}

/// An i.MXT RT pad
///
/// The `Base` is the pad tag, like `GPIO_AD_B0`. The `Offset` is the
/// constant (type) that describes the pad number.
///
/// `Pad`s have no size.
#[derive(Debug)]
pub struct Pad<const MUX: u32, const PAD: u32> {
    // Block auto-implement of Send / Sync. We'll manually implement
    // the traits.
    _not_send_sync: ::core::marker::PhantomData<*const ()>,
}

impl<const MUX: u32, const PAD: u32> Pad<MUX, PAD> {
    /// Creates a handle to the pad
    ///
    /// # Safety
    ///
    /// `new()` may be called anywhere, by anyone. This could lead to multiple objects that
    /// mutate the same memory. Consider calling `new()` once, near startup, then passing objects
    /// and references throughout your program.
    #[inline(always)]
    pub const unsafe fn new() -> Self {
        Self {
            _not_send_sync: ::core::marker::PhantomData,
        }
    }
    /// Cast the MUX address.
    const fn mux() -> *mut u32 {
        MUX as *mut u32
    }
    /// Cast the PAD address.
    const fn pad() -> *mut u32 {
        PAD as *mut u32
    }
}

unsafe impl<const MUX: u32, const PAD: u32> Send for Pad<MUX, PAD> {}

impl<const MUX: u32, const PAD: u32> Pad<MUX, PAD> {
    /// Erase the pad's type, returning an `ErasedPad`
    #[inline(always)]
    pub const fn erase(self) -> ErasedPad {
        ErasedPad {
            mux: Self::mux(),
            pad: Self::pad(),
        }
    }

    /// Set the alternate value for this pad.
    ///
    /// Performs a read-modify-write on the pad's mux register to set the
    /// alternate value to `alt`.
    ///
    /// # Safety
    ///
    /// This function performs a read-modify-write operation on peripheral
    /// memory. It could race with other calls that modify this pad's mux register.
    /// For a safer interface, see [`alternate()`](crate::alternate()).
    #[inline(always)]
    pub unsafe fn set_alternate(alt: u32) {
        let mut pad = Self::new();
        alternate(&mut pad, alt);
    }

    /// Set the pad's SION bit.
    ///
    /// Performs a read-modify-write on the pad's mux register to set the SION
    /// bit.
    ///
    /// # Safety
    ///
    /// This function performs a read-modify-write operation on peripheral
    /// memory. It could race with other calls that modify this pad's mux register.
    /// For a safer interface, see [`set_sion()`](crate::set_sion()).
    #[inline(always)]
    pub unsafe fn set_sion() {
        let mut pad = Self::new();
        set_sion(&mut pad);
    }

    /// Clear the pad's SION bit.
    ///
    /// Performs a read-modify-write on the pad's mux register to Clear the SION
    /// bit.
    ///
    /// # Safety
    ///
    /// This function performs a read-modify-write operation on peripheral
    /// memory. It could race with other calls that modify this pad's mux register.
    /// For a safer interface, see [`clear_sion()`](crate::clear_sion()).
    #[inline(always)]
    pub unsafe fn clear_sion() {
        let mut pad = Self::new();
        clear_sion(&mut pad);
    }

    /// Set the pad's configuration.
    ///
    /// # Safety
    ///
    /// This function performs a read-modify-write operation on peripheral memory.
    /// It could race with any other function that modifies this pad's registers.
    /// For a safer interface, see [`configure()`](crate::configure()).
    #[inline(always)]
    pub unsafe fn configure(config: Config) {
        let mut pad = Self::new();
        configure(&mut pad, config);
    }
}

impl<const MUX: u32, const PAD: u32> private::Sealed for Pad<MUX, PAD> {}

unsafe impl<const MUX: u32, const PAD: u32> crate::Iomuxc for Pad<MUX, PAD> {
    #[inline(always)]
    fn mux(&mut self) -> *mut u32 {
        Self::mux()
    }

    #[inline(always)]
    fn pad(&mut self) -> *mut u32 {
        Self::pad()
    }
}

/// A pad that has its type erased
///
/// `ErasedPad` moves the pad state to run time, rather than compile time.
/// The type may provide more flexibility for some APIs. Each `ErasedPad` is
/// two pointers large.
///
/// `ErasedPad` may be converted back into their strongly-typed analogs using
/// `TryFrom` and `TryInto` conversions.
///
/// ```no_run
/// use imxrt_iomuxc as iomuxc;
/// # type GPIO_AD_B0_03 = iomuxc::Pad<0xDEAD, 0xBEEF>;
/// let gpio_ad_b0_03 = unsafe { GPIO_AD_B0_03::new() };
/// let mut erased = gpio_ad_b0_03.erase();
///
/// // Erased pads may be manually manipulated
/// iomuxc::alternate(&mut erased, 7);
/// iomuxc::set_sion(&mut erased);
///
/// // Try to convert the erased pad back to its strongly-typed counterpart
/// use core::convert::TryFrom;
/// let gpio_ad_b0_03 = GPIO_AD_B0_03::try_from(erased).unwrap();
/// ```
#[derive(Debug)]
pub struct ErasedPad {
    mux: *mut u32,
    pad: *mut u32,
}

impl private::Sealed for ErasedPad {}

unsafe impl crate::Iomuxc for ErasedPad {
    #[inline(always)]
    fn mux(&mut self) -> *mut u32 {
        self.mux
    }

    #[inline(always)]
    fn pad(&mut self) -> *mut u32 {
        self.pad
    }
}

unsafe impl Send for ErasedPad {}

/// An error that indicates the conversion from an `ErasedPad` to a
/// strongly-typed pad failed.
///
/// Failure happens when trying to convert an `ErasedPad` into the incorrect
/// pad. The error indicator wraps the pad that failed to convert.
#[derive(Debug)]
pub struct WrongPadError(pub ErasedPad);

impl<const MUX: u32, const PAD: u32> ::core::convert::TryFrom<ErasedPad> for Pad<MUX, PAD> {
    type Error = WrongPadError;
    fn try_from(erased_pad: ErasedPad) -> Result<Self, Self::Error> {
        if erased_pad.mux == Self::mux() && erased_pad.pad == Self::pad() {
            Ok(unsafe { Self::new() })
        } else {
            Err(WrongPadError(erased_pad))
        }
    }
}

/// A daisy selection
///
/// A daisy chain specifies which pad will be used for a peripheral's
/// input. Call `write()` to commit the settings described by a `Daisy`
/// value.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Daisy {
    reg: *mut u32,
    value: u32,
}

impl Daisy {
    /// Create a new select input that, when utilized, will write
    /// `value` into `reg`
    #[allow(unused)] // Used behind feature flags
    const fn new(reg: *mut u32, value: u32) -> Self {
        Daisy { reg, value }
    }

    /// Commit the settings defined by this `Daisy` value to the hardware
    ///
    /// # Safety
    ///
    /// This modifies a global, processor register, so the typical
    /// rules around mutable static memory apply.
    #[inline(always)]
    pub unsafe fn write(self) {
        ptr::write_volatile(self.reg, self.value);
    }
}

/// GPIO pad configuration
pub mod gpio {
    /// A GPIO pin
    ///
    /// The constant `N` is the associated GPIO module
    /// (a `3` for `GPIO3`).
    pub trait Pin<const N: u8>: super::Iomuxc {
        /// The alternate value for this pad
        const ALT: u32;
        /// The offset; `U13` for `GPIO5_IO13`
        const OFFSET: u32;
    }

    /// Prepare a pad to be used as a GPIO pin
    pub fn prepare<P: Pin<N>, const N: u8>(pin: &mut P) {
        super::alternate(pin, P::ALT);
    }
}

/// CCM pad configuration.
pub mod ccm {
    /// A CCM pin.
    ///
    /// These can be used for observing clock outputs, or for generating
    /// outputs for your PMIC.
    pub trait Pin: super::Iomuxc {
        /// The alternate value for this pad.
        const ALT: u32;
        /// The pin function.
        type Function: Function;
    }

    /// Prepare a pad to be used as a CCM pin.
    pub fn prepare<P: Pin>(pin: &mut P) {
        super::alternate(pin, P::ALT);
    }

    mod private {
        pub trait Sealed {}
    }
    /// A CCM pin function.
    pub trait Function: private::Sealed {}

    /// Observability output.
    pub enum Observable<const N: u8> {}
    impl private::Sealed for Observable<1> {}
    impl private::Sealed for Observable<2> {}
    impl Function for Observable<1> {}
    impl Function for Observable<2> {}
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Debug)]
    struct TestBase;

    type TestPad = Pad<0, 0>;

    #[test]
    fn erased_pad_convert_success() {
        let pad = unsafe { TestPad::new() };
        let erased = pad.erase();

        use core::convert::TryFrom;
        TestPad::try_from(erased).expect("This is the test pad");
    }

    #[test]
    fn erased_pad_convert_fail() {
        let pad = unsafe { TestPad::new() };
        let erased = pad.erase();

        use core::convert::TryFrom;
        type OtherPad = Pad<1, 1>;
        OtherPad::try_from(erased).expect_err("This is a different pad");
    }
}

/// ```
/// fn is_send<S: Send>(s: S) {}
/// type GPIO_AD_B0_03 = imxrt_iomuxc::Pad<0xDEAD, 0xBEEF>;
/// is_send(unsafe { GPIO_AD_B0_03::new() }.erase());
/// ```
#[cfg(doctest)]
struct ErasedPadsAreSend;

/// ```
/// fn is_send<S: Send>(s: S) {}
/// type GPIO_AD_B0_03 = imxrt_iomuxc::Pad<0xDEAD, 0xBEEF>;
/// is_send(unsafe { GPIO_AD_B0_03::new() });
/// is_send(unsafe { GPIO_AD_B0_03::new() }.erase());
/// ```
#[cfg(doctest)]
struct PadsAreSend;

/// ```compile_fail
/// fn is_sync<S: Sync>(s: S) {}
/// type GPIO_AD_B0_03 = imxrt_iomuxc::Pad<0xDEAD, 0xBEEF>;
/// is_sync(unsafe { GPIO_AD_B0_03::new() }.erase())
/// ```
#[cfg(doctest)]
struct ErasedPadsAreNotSync;

/// ```compile_fail
/// fn is_sync<S: Sync>(s: S) {}
/// type GPIO_AD_B0_03 = imxrt_iomuxc::Pad<0xDEAD, 0xBEEF>;
/// is_sync(unsafe { GPIO_AD_B0_03::new() })
/// ```
#[cfg(doctest)]
struct PadsAreNotSync;