1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
use crate::avl::{Iter, Tree, WeakTree};
pub use crate::chunk::DEFAULT_SIZE;
use std::{
    borrow::Borrow,
    cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd},
    default::Default,
    fmt::{self, Debug, Formatter},
    hash::{Hash, Hasher},
    iter::FromIterator,
    ops::{RangeBounds, RangeFull},
};

#[cfg(feature = "serde")]
use serde::{
    de::{SeqAccess, Visitor},
    ser::SerializeSeq,
    Deserialize, Deserializer, Serialize, Serializer,
};

#[cfg(feature = "serde")]
use std::marker::PhantomData;

#[cfg(feature = "rayon")]
use rayon::{
    iter::{FromParallelIterator, IntoParallelIterator},
    prelude::*,
};

/// This set uses a similar strategy to BTreeSet to ensure cache
/// efficient performance on modern hardware while still providing
/// log(N) get, insert, and remove operations.
/// # Examples
/// ```
/// use std::string::String;
/// use self::immutable_chunkmap::set::SetM;
///
/// let m =
///    SetM::new()
///    .insert(String::from("1")).0
///    .insert(String::from("2")).0
///    .insert(String::from("3")).0;
///
/// assert_eq!(m.contains("1"), true);
/// assert_eq!(m.contains("2"), true);
/// assert_eq!(m.contains("3"), true);
/// assert_eq!(m.contains("4"), false);
///
/// for k in &m { println!("{}", k) }
/// ```
#[derive(Clone)]
pub struct Set<K: Ord + Clone, const SIZE: usize>(Tree<K, (), SIZE>);

/// set with a smaller chunk size, faster to update, slower to search
pub type SetS<K> = Set<K, { DEFAULT_SIZE / 2 }>;

/// set with the default chunk size, a good balance of search and update performance
pub type SetM<K> = Set<K, DEFAULT_SIZE>;

/// set with a larger chunk size, faster to search, slower to update
pub type SetL<K> = Set<K, { DEFAULT_SIZE * 2 }>;

#[derive(Clone)]
pub struct WeakSetRef<K: Ord + Clone, const SIZE: usize>(WeakTree<K, (), SIZE>);

pub type WeakSetRefS<K> = WeakSetRef<K, 32>;
pub type WeakSetRefM<K> = WeakSetRef<K, 128>;
pub type WeakSetRefL<K> = WeakSetRef<K, 512>;

impl<K, const SIZE: usize> WeakSetRef<K, SIZE>
where
    K: Ord + Clone,
{
    pub fn upgrade(&self) -> Option<Set<K, SIZE>> {
        self.0.upgrade().map(Set)
    }
}

impl<K, const SIZE: usize> Hash for Set<K, SIZE>
where
    K: Hash + Ord + Clone,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state)
    }
}

impl<K, const SIZE: usize> Default for Set<K, SIZE>
where
    K: Ord + Clone,
{
    fn default() -> Set<K, SIZE> {
        Set::new()
    }
}

impl<K, const SIZE: usize> PartialEq for Set<K, SIZE>
where
    K: Ord + Clone,
{
    fn eq(&self, other: &Set<K, SIZE>) -> bool {
        self.0 == other.0
    }
}

impl<K, const SIZE: usize> Eq for Set<K, SIZE> where K: Eq + Ord + Clone {}

impl<K, const SIZE: usize> PartialOrd for Set<K, SIZE>
where
    K: Ord + Clone,
{
    fn partial_cmp(&self, other: &Set<K, SIZE>) -> Option<Ordering> {
        self.0.partial_cmp(&other.0)
    }
}

impl<K, const SIZE: usize> Ord for Set<K, SIZE>
where
    K: Ord + Clone,
{
    fn cmp(&self, other: &Set<K, SIZE>) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl<K, const SIZE: usize> Debug for Set<K, SIZE>
where
    K: Debug + Ord + Clone,
{
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_set().entries(self.into_iter()).finish()
    }
}

impl<K, const SIZE: usize> FromIterator<K> for Set<K, SIZE>
where
    K: Ord + Clone,
{
    fn from_iter<T: IntoIterator<Item = K>>(iter: T) -> Self {
        Set::new().insert_many(iter)
    }
}

pub struct SetIter<
    'a,
    R: RangeBounds<Q> + 'a,
    Q: Ord + ?Sized,
    K: 'a + Clone + Ord + Borrow<Q>,
    const SIZE: usize,
>(Iter<'a, R, Q, K, (), SIZE>);

impl<'a, R, Q, K, const SIZE: usize> Iterator for SetIter<'a, R, Q, K, SIZE>
where
    Q: Ord + ?Sized,
    R: RangeBounds<Q> + 'a,
    K: 'a + Clone + Ord + Borrow<Q>,
{
    type Item = &'a K;
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|(k, ())| k)
    }
}

impl<'a, R, Q, K, const SIZE: usize> DoubleEndedIterator for SetIter<'a, R, Q, K, SIZE>
where
    Q: Ord + ?Sized,
    R: RangeBounds<Q> + 'a,
    K: 'a + Clone + Ord + Borrow<Q>,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|(k, ())| k)
    }
}

impl<'a, K, const SIZE: usize> IntoIterator for &'a Set<K, SIZE>
where
    K: 'a + Ord + Clone,
{
    type Item = &'a K;
    type IntoIter = SetIter<'a, RangeFull, K, K, SIZE>;
    fn into_iter(self) -> Self::IntoIter {
        SetIter(self.0.into_iter())
    }
}

#[cfg(feature = "serde")]
impl<V, const SIZE: usize> Serialize for Set<V, SIZE>
where
    V: Serialize + Clone + Ord,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut seq = serializer.serialize_seq(Some(self.len()))?;
        for v in self {
            seq.serialize_element(v)?
        }
        seq.end()
    }
}

#[cfg(feature = "serde")]
struct SetVisitor<V: Clone + Ord, const SIZE: usize> {
    marker: PhantomData<fn() -> Set<V, SIZE>>,
}

#[cfg(feature = "serde")]
impl<'a, V, const SIZE: usize> Visitor<'a> for SetVisitor<V, SIZE>
where
    V: Deserialize<'a> + Clone + Ord,
{
    type Value = Set<V, SIZE>;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        formatter.write_str("expecting an immutable_chunkmap::Set")
    }

    fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
    where
        A: SeqAccess<'a>,
    {
        let mut t = Set::<V, SIZE>::new();
        while let Some(v) = seq.next_element()? {
            t.insert_cow(v);
        }
        Ok(t)
    }
}

#[cfg(feature = "serde")]
impl<'a, V, const SIZE: usize> Deserialize<'a> for Set<V, SIZE>
where
    V: Deserialize<'a> + Clone + Ord,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'a>,
    {
        deserializer.deserialize_seq(SetVisitor {
            marker: PhantomData,
        })
    }
}

#[cfg(feature = "rayon")]
impl<'a, V, const SIZE: usize> IntoParallelIterator for &'a Set<V, SIZE>
where
    V: 'a + Ord + Clone + Send + Sync,
{
    type Item = &'a V;
    type Iter = rayon::vec::IntoIter<&'a V>;

    fn into_par_iter(self) -> Self::Iter {
        self.into_iter().collect::<Vec<_>>().into_par_iter()
    }
}

#[cfg(feature = "rayon")]
impl<V, const SIZE: usize> FromParallelIterator<V> for Set<V, SIZE>
where
    V: Ord + Clone + Send + Sync,
{
    fn from_par_iter<I>(i: I) -> Self
    where
        I: IntoParallelIterator<Item = V>,
    {
        i.into_par_iter()
            .fold_with(Set::new(), |mut m, v| {
                m.insert_cow(v);
                m
            })
            .reduce_with(|m0, m1| m0.union(&m1))
            .unwrap_or_else(Set::new)
    }
}

impl<K, const SIZE: usize> Set<K, SIZE>
where
    K: Ord + Clone,
{
    /// Create a new empty set
    pub fn new() -> Self {
        Set(Tree::new())
    }

    /// Create a weak reference to this set
    pub fn downgrade(&self) -> WeakSetRef<K, SIZE> {
        WeakSetRef(self.0.downgrade())
    }

    /// Return the number of strong references to this set (see Arc)
    pub fn strong_count(&self) -> usize {
        self.0.strong_count()
    }

    /// Return the number of weak references to this set (see Arc)
    pub fn weak_count(&self) -> usize {
        self.0.weak_count()
    }

    /// This will insert many elements at once, and is
    /// potentially a lot faster than inserting one by one,
    /// especially if the data is sorted.
    ///
    /// #Examples
    ///```
    /// use self::immutable_chunkmap::set::SetM;
    ///
    /// let mut v = vec![1, 10, -12, 44, 50];
    /// v.sort_unstable();
    ///
    /// let m = SetM::new().insert_many(v.iter().map(|k| *k));
    ///
    /// for k in &v {
    ///   assert_eq!(m.contains(k), true)
    /// }
    /// ```
    pub fn insert_many<E: IntoIterator<Item = K>>(&self, elts: E) -> Self {
        let root = self.0.insert_many(elts.into_iter().map(|k| (k, ())));
        Set(root)
    }

    /// Remove multiple elements in a single pass. Similar performance
    /// to insert_many.
    pub fn remove_many<Q, E>(&self, elts: E) -> Self
    where
        Q: Ord,
        K: Borrow<Q>,
        E: IntoIterator<Item = Q>,
    {
        let root = self
            .0
            .update_many(elts.into_iter().map(|k| (k, ())), &mut |_, _, _| None);
        Set(root)
    }

    /// This is just slightly wierd, however if you have a bunch of
    /// borrowed forms of members of the set, and you want to look at
    /// the real entries and possibly add/update/remove them, then
    /// this method is for you.
    pub fn update_many<Q, E, F>(&self, elts: E, mut f: F) -> Self
    where
        Q: Ord,
        K: Borrow<Q>,
        E: IntoIterator<Item = Q>,
        F: FnMut(Q, Option<&K>) -> Option<K>,
    {
        let root =
            self.0
                .update_many(elts.into_iter().map(|k| (k, ())), &mut |q, (), cur| {
                    let cur = cur.map(|(k, ())| k);
                    f(q, cur).map(|k| (k, ()))
                });
        Set(root)
    }

    /// return a new set with k inserted into it. If k already
    /// exists in the old set return true, else false. If the
    /// element already exists in the set memory will not be
    /// allocated.
    pub fn insert(&self, k: K) -> (Self, bool) {
        if self.contains(&k) {
            (self.clone(), true)
        } else {
            (Set(self.0.insert(k, ()).0), false)
        }
    }

    /// insert `k` with copy on write semantics. if `self` is a unique
    /// reference to the set, then k will be inserted in
    /// place. Otherwise, only the parts of the set necessary to
    /// insert `k` will be copied, and then the copies will be
    /// mutated. self will share all the parts that weren't modfied
    /// with any previous clones.
    pub fn insert_cow(&mut self, k: K) -> bool {
        self.0.insert_cow(k, ()).is_some()
    }

    /// return true if the set contains k, else false. Runs in
    /// log(N) time and constant space. where N is the size of
    /// the set.
    pub fn contains<'a, Q>(&'a self, k: &Q) -> bool
    where
        Q: ?Sized + Ord,
        K: Borrow<Q>,
    {
        self.0.get(k).is_some()
    }

    /// return a reference to the item in the set that is equal to the
    /// given value, or None if no such value exists.
    pub fn get<'a, Q>(&'a self, k: &Q) -> Option<&K>
    where
        Q: ?Sized + Ord,
        K: Borrow<Q>,
    {
        self.0.get_key(k)
    }

    /// return a new set with k removed. Runs in log(N) time
    /// and log(N) space, where N is the size of the set
    pub fn remove<Q: Sized + Ord>(&self, k: &Q) -> (Self, bool)
    where
        K: Borrow<Q>,
    {
        let (t, prev) = self.0.remove(k);
        (Set(t), prev.is_some())
    }

    /// remove `k` from the set in place with copy on write semantics
    /// (see `insert_cow`). return true if `k` was in the set.
    pub fn remove_cow<Q: Sized + Ord>(&mut self, k: &Q) -> bool
    where
        K: Borrow<Q>,
    {
        self.0.remove_cow(k).is_some()
    }

    /// return the union of 2 sets. Runs in O(log(N) + M) time and
    /// space, where N is the largest of the two sets, and M is the
    /// number of chunks that intersect, which is roughly proportional
    /// to the size of the intersection.
    ///
    /// # Examples
    /// ```
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::set::SetM;
    ///
    /// let s0 = SetM::from_iter(0..10);
    /// let s1 = SetM::from_iter(5..15);
    /// let s2 = s0.union(&s1);
    /// for i in 0..15 {
    ///     assert!(s2.contains(&i));
    /// }
    /// ```
    pub fn union(&self, other: &Set<K, SIZE>) -> Self {
        Set(Tree::union(&self.0, &other.0, &mut |_, (), ()| Some(())))
    }

    /// return the intersection of 2 sets. Runs in O(log(N) + M) time
    /// and space, where N is the smallest of the two sets, and M is
    /// the number of intersecting chunks.
    ///
    /// # Examples
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::set::SetM;
    ///
    /// let s0 = SetM::from_iter(0..100);
    /// let s1 = SetM::from_iter(20..50);
    /// let s2 = s0.intersect(&s1);
    ///
    /// assert!(s2.len() == 30);
    /// for i in 0..100 {
    ///     if i < 20 || i >= 50 {
    ///         assert!(!s2.contains(&i));
    ///     } else {
    ///         assert!(s2.contains(&i));
    ///     }
    /// }
    pub fn intersect(&self, other: &Set<K, SIZE>) -> Self {
        Set(Tree::intersect(
            &self.0,
            &other.0,
            &mut |_, (), ()| Some(()),
        ))
    }

    /// Return the difference of two sets. Runs in O(log(N) + M) time
    /// and space, where N is the smallest of the two sets, and M is
    /// the number of intersecting chunks.
    ///
    /// # Examples
    /// ```
    /// use std::iter::FromIterator;
    /// use self::immutable_chunkmap::set::SetM;
    ///
    /// let s0 = SetM::from_iter(0..100);
    /// let s1 = SetM::from_iter(0..50);
    /// let s2 = s0.diff(&s1);
    ///
    /// assert!(s2.len() == 50);
    /// for i in 0..50 {
    ///     assert!(!s2.contains(&i));
    /// }
    /// for i in 50..100 {
    ///     assert!(s2.contains(&i));
    /// }
    /// ```
    pub fn diff(&self, other: &Set<K, SIZE>) -> Self
    where
        K: Debug,
    {
        Set(Tree::diff(&self.0, &other.0, &mut |_, (), ()| None))
    }

    /// get the number of elements in the map O(1) time and space
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// return an iterator over the subset of elements in the
    /// set that are within the specified range.
    ///
    /// The returned iterator runs in O(log(N) + M) time, and
    /// constant space. N is the number of elements in the
    /// tree, and M is the number of elements you examine.
    ///
    /// if lbound >= ubound the returned iterator will be empty
    pub fn range<'a, Q, R>(&'a self, r: R) -> SetIter<'a, R, Q, K, SIZE>
    where
        Q: Ord + ?Sized + 'a,
        K: 'a + Clone + Ord + Borrow<Q>,
        R: RangeBounds<Q> + 'a,
    {
        SetIter(self.0.range(r))
    }
}

impl<K, const SIZE: usize> Set<K, SIZE>
where
    K: Ord + Clone + Debug,
{
    #[allow(dead_code)]
    pub(crate) fn invariant(&self) -> () {
        self.0.invariant()
    }
}