1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
// Copyright 2016 Eli Friedman.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![allow(unused_variables)]

use conversions::Convert128;
use std::mem::transmute;
use std::mem::uninitialized;
use std::ptr::copy_nonoverlapping;
use simd;
use __m128;
use __m128i;
use __m64;
use ::simd_shuffle4;

fn convert_bool32fx4_to_m128(a: simd::bool32fx4) -> __m128 {
    unsafe { transmute(a) }
}

// Declarations copied from the llvmint crate.
#[allow(improper_ctypes)]
extern {
    #[link_name = "llvm.x86.sse.sqrt.ss"]
    pub fn sse_sqrt_ss(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.cvtss2si"]
    pub fn sse_cvtss2si(a: __m128) -> i32;
    #[link_name = "llvm.x86.sse.cvttss2si"]
    pub fn sse_cvttss2si(a: __m128) -> i32;
    #[link_name = "llvm.x86.sse.cvtss2si64"]
    pub fn sse_cvtss2si64(a: __m128) -> i64;
    #[link_name = "llvm.x86.sse.cvttss2si64"]
    pub fn sse_cvttss2si64(a: __m128) -> i64;
    #[link_name = "llvm.x86.sse.movmsk.ps"]
    pub fn sse_movmsk_ps(a: __m128) -> i32;
    #[link_name = "llvm.x86.sse.sfence"]
    pub fn sse_sfence() ->();
    #[link_name = "llvm.x86.sse.rcp.ss"]
    pub fn sse_rcp_ss(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.rsqrt.ss"]
    pub fn sse_rsqrt_ss(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.min.ss"]
    pub fn sse_min_ss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.max.ss"]
    pub fn sse_max_ss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.cmp.ss"]
    pub fn sse_cmp_ss(a: __m128, b: __m128, c: i8) -> __m128;
    #[link_name = "llvm.x86.sse.comieq.ss"]
    pub fn sse_comieq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comilt.ss"]
    pub fn sse_comilt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comile.ss"]
    pub fn sse_comile_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comigt.ss"]
    pub fn sse_comigt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comige.ss"]
    pub fn sse_comige_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comineq.ss"]
    pub fn sse_comineq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomieq.ss"]
    pub fn sse_ucomieq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomilt.ss"]
    pub fn sse_ucomilt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomile.ss"]
    pub fn sse_ucomile_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomigt.ss"]
    pub fn sse_ucomigt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomige.ss"]
    pub fn sse_ucomige_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomineq.ss"]
    pub fn sse_ucomineq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.cvtsi2ss"]
    pub fn sse_cvtsi2ss(a: __m128, b: i32) -> __m128;
    #[link_name = "llvm.x86.sse.cvtsi642ss"]
    pub fn sse_cvtsi642ss(a: __m128, b: i64) -> __m128;
    #[link_name = "llvm.x86.sse.stmxcsr"]
    pub fn sse_stmxcsr(a: *mut i8) -> ();
    #[link_name = "llvm.x86.sse.ldmxcsr"]
    pub fn sse_ldmxcsr(a: *mut i8) -> ();
    #[link_name = "llvm.prefetch"]
    pub fn prefetch(a: *const i8, b: i32, c: i32, d: i32) -> ();
}

/// addss
#[inline]
pub fn _mm_add_ss(a: __m128, b: __m128) -> __m128 {
    a.replace(0, a.extract(0) + b.extract(0))
}
/// addps
#[inline]
pub fn _mm_add_ps(a: __m128, b: __m128) -> __m128 {
    a + b
}
/// subss
#[inline]
pub fn _mm_sub_ss(a: __m128, b: __m128) -> __m128 {
    a.replace(0, a.extract(0) - b.extract(0))
}
/// subps
#[inline]
pub fn _mm_sub_ps(a: __m128, b: __m128) -> __m128 {
    a - b
}
/// mulss
#[inline]
pub fn _mm_mul_ss(a: __m128, b: __m128) -> __m128 {
    a.replace(0, a.extract(0) * b.extract(0))
}
/// mulps
#[inline]
pub fn _mm_mul_ps(a: __m128, b: __m128) -> __m128 {
    a * b
}
/// divss
#[inline]
pub fn _mm_div_ss(a: __m128, b: __m128) -> __m128 {
    a.replace(0, a.extract(0) / b.extract(0))
}
/// divps
#[inline]
pub fn _mm_div_ps(a: __m128, b: __m128) -> __m128 {
    a / b
}
/// sqrtss
#[inline]
pub fn _mm_sqrt_ss(a: __m128) -> __m128 {
    unsafe { sse_sqrt_ss(a) }
}
/// sqrtps
#[inline]
pub fn _mm_sqrt_ps(a: __m128) -> __m128 {
    a.sqrt()
}
/// rcpss
#[inline]
pub fn _mm_rcp_ss(a: __m128) -> __m128 {
    unsafe { sse_rcp_ss(a) }
}
/// rcpps
#[inline]
pub fn _mm_rcp_ps(a: __m128) -> __m128 {
    a.approx_reciprocal()
}
/// rsqrtss
#[inline]
pub fn _mm_rsqrt_ss(a: __m128) -> __m128 {
    unsafe { sse_rsqrt_ss(a) }
}
/// rsqrtps
#[inline]
pub fn _mm_rsqrt_ps(a: __m128) -> __m128 {
    a.approx_rsqrt()
}
/// minss
#[inline]
pub fn _mm_min_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_min_ss(a, b) }
}
/// minps
#[inline]
pub fn _mm_min_ps(a: __m128, b: __m128) -> __m128 {
    a.min(b)
}
/// maxss
#[inline]
pub fn _mm_max_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_max_ss(a, b) }
}
/// maxps
#[inline]
pub fn _mm_max_ps(a: __m128, b: __m128) -> __m128 {
    a.max(b)
}
/// andps
#[inline]
pub fn _mm_and_ps(a: __m128, b: __m128) -> __m128 {
    (a.as_i64x2() & b.as_i64x2()).as_f32x4()
}
/// andnps
#[inline]
pub fn _mm_andnot_ps(a: __m128, b: __m128) -> __m128 {
    // FIXME: Not operator from simd doesn't get inlined?!
    ((a.as_i64x2() ^ __m128i::splat(!0)) & b.as_i64x2()).as_f32x4()
}
/// orps
#[inline]
pub fn _mm_or_ps(a: __m128, b: __m128) -> __m128 {
    (a.as_i64x2() | b.as_i64x2()).as_f32x4()
}
/// xorps
#[inline]
pub fn _mm_xor_ps(a: __m128, b: __m128) -> __m128 {
    (a.as_i64x2() ^ b.as_i64x2()).as_f32x4()
}
/// cmpss
#[inline]
pub fn _mm_cmpeq_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 0) }
}
/// cmpps
#[inline]
pub fn _mm_cmpeq_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.eq(b))
}
/// cmpss
#[inline]
pub fn _mm_cmplt_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 1) }
}
/// cmpps
#[inline]
pub fn _mm_cmplt_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.lt(b))
}
/// cmpss
#[inline]
pub fn _mm_cmple_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 2) }
}
/// cmpps
#[inline]
pub fn _mm_cmple_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.le(b))
}
/// cmpss
#[inline]
pub fn _mm_cmpgt_ss(a: __m128, b: __m128) -> __m128 {
    _mm_move_ss(a, _mm_cmplt_ss(b, a))
}
/// cmpps
#[inline]
pub fn _mm_cmpgt_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.gt(b))
}
/// cmpss
#[inline]
pub fn _mm_cmpge_ss(a: __m128, b: __m128) -> __m128 {
    _mm_move_ss(a, _mm_cmple_ss(b, a))
}
/// cmpps
#[inline]
pub fn _mm_cmpge_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.ge(b))
}
/// cmpss
#[inline]
pub fn _mm_cmpneq_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 4) }
}
/// cmpps
#[inline]
pub fn _mm_cmpneq_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.ne(b))
}
/// cmpss
#[inline]
pub fn _mm_cmpnlt_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 5) }
}
/// cmpps
#[inline]
pub fn _mm_cmpnlt_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.ge(b) | (a.ne(a) | b.ne(b)))
}
/// cmpss
#[inline]
pub fn _mm_cmpnle_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 6) }
}
/// cmpps
#[inline]
pub fn _mm_cmpnle_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.gt(b) | (a.ne(a) | b.ne(b)))
}
/// cmpss
#[inline]
pub fn _mm_cmpngt_ss(a: __m128, b: __m128) -> __m128 {
    _mm_move_ss(a, _mm_cmpnlt_ss(b, a))
}
/// cmpps
#[inline]
pub fn _mm_cmpngt_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.le(b) | (a.ne(a) | b.ne(b)))
}
/// cmpss
#[inline]
pub fn _mm_cmpnge_ss(a: __m128, b: __m128) -> __m128 {
    _mm_move_ss(a, _mm_cmpnle_ss(b, a))
}
/// cmpps
#[inline]
pub fn _mm_cmpnge_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.lt(b) | (a.ne(a) | b.ne(b)))
}
/// cmpss
#[inline]
pub fn _mm_cmpord_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 7) }
}
/// cmpps
#[inline]
pub fn _mm_cmpord_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.eq(a) & b.eq(b))
}
/// cmpss
#[inline]
pub fn _mm_cmpunord_ss(a: __m128, b: __m128) -> __m128 {
    unsafe { sse_cmp_ss(a, b, 3) }
}
/// cmpps
#[inline]
pub fn _mm_cmpunord_ps(a: __m128, b: __m128) -> __m128 {
    convert_bool32fx4_to_m128(a.ne(a) | b.ne(b))
}
/// comiss
#[inline]
pub fn _mm_comieq_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_comieq_ss(a, b) }
}
/// comiss
#[inline]
pub fn _mm_comilt_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_comilt_ss(a, b) }
}
/// comiss
#[inline]
pub fn _mm_comile_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_comile_ss(a, b) }
}
/// comiss
#[inline]
pub fn _mm_comigt_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_comigt_ss(a, b) }
}
/// comiss
#[inline]
pub fn _mm_comige_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_comige_ss(a, b) }
}
/// comiss
#[inline]
pub fn _mm_comineq_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_comineq_ss(a, b) }
}
/// ucomiss
#[inline]
pub fn _mm_ucomieq_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_ucomieq_ss(a, b) }
}
/// ucomiss
#[inline]
pub fn _mm_ucomilt_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_ucomilt_ss(a, b) }
}
/// ucomiss
#[inline]
pub fn _mm_ucomile_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_ucomile_ss(a, b) }
}
/// ucomiss
#[inline]
pub fn _mm_ucomigt_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_ucomigt_ss(a, b) }
}
/// ucomiss
#[inline]
pub fn _mm_ucomige_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_ucomige_ss(a, b) }
}
/// ucomiss
#[inline]
pub fn _mm_ucomineq_ss(a: __m128, b: __m128) -> i32 {
    unsafe { sse_ucomineq_ss(a, b) }
}
/// cvtss2si
#[inline]
pub fn _mm_cvtss_si32(a: __m128) -> i32 {
    unsafe { sse_cvtss2si(a) }
}
/// cvtss2si
#[inline]
pub fn _mm_cvt_ss2si(a: __m128) -> i32 {
    _mm_cvtss_si32(a)
}
/// cvtss2si
#[inline]
#[cfg(target_pointer_width = "64")]
pub fn _mm_cvtss_si64(a: __m128) -> i64 {
    unsafe { sse_cvtss2si64(a) }
}
/// cvttss2si
#[inline]
pub fn _mm_cvttss_si32(a: __m128) -> i32 {
    unsafe { sse_cvttss2si(a) }
}
/// cvttss2si
#[inline]
pub fn _mm_cvtt_ss2si(a: __m128) -> i32 {
    _mm_cvttss_si32(a)
}
/// cvttss2si
#[inline]
#[cfg(target_pointer_width = "64")]
pub fn _mm_cvttss_si64(a: __m128) -> i64 {
    unsafe { sse_cvttss2si64(a) }
}
/// cvtsi2ss
#[inline]
pub fn _mm_cvtsi32_ss(a: __m128, b: i32) -> __m128 {
    unsafe { sse_cvtsi2ss(a, b) }
}
/// cvtsi2ss
#[inline]
pub fn _mm_cvt_si2ss(a: __m128, b: i32) -> __m128 {
    _mm_cvtsi32_ss(a, b)
}
/// cvtsi2ss
#[inline]
#[cfg(target_pointer_width = "64")]
pub fn _mm_cvtsi64_ss(a: __m128, b: i64) -> __m128 {
    unsafe { sse_cvtsi642ss(a, b) }
}
#[inline]
pub fn _mm_cvtss_f32(a: __m128) -> f32 {
    a.extract(0)
}
/// movhps
#[inline]
pub unsafe fn _mm_loadh_pi(mut a: __m128, p: *const __m64) -> __m128 {
    // Cast to u8 to avoid assumptions about alignment.
    let p = p as *const u8;
    let pa = &mut a as *mut __m128 as *mut u8;
    copy_nonoverlapping(p, pa.offset(8), 8);
    a
}
/// movlps
#[inline]
pub unsafe fn _mm_loadl_pi(mut a: __m128, p: *const __m64) -> __m128 {
    // Cast to u8 to avoid assumptions about alignment.
    // FIXME: For some reason, this comes out as two instructions;
    // write this differently?
    let p = p as *const u8;
    let pa = &mut a as *mut __m128 as *mut u8;
    copy_nonoverlapping(p, pa, 8);
    a
}
/// movss
#[inline]
pub unsafe fn _mm_load_ss(p: *const f32) -> __m128 {
    let mut f: f32 = 0.;
    let p = p as *const u8;
    let pf = &mut f as *mut f32 as *mut u8;
    copy_nonoverlapping(p, pf, 4);
    __m128::new(f, 0., 0., 0.)
}
#[inline]
pub unsafe fn _mm_load1_ps(p: *const f32) -> __m128 {
    let mut f: f32 = 0.;
    let p = p as *const u8;
    let pf = &mut f as *mut f32 as *mut u8;
    copy_nonoverlapping(p, pf, 4);
    __m128::new(f, f, f, f)
}
#[inline]
pub unsafe fn _mm_load_ps1(p: *const f32) -> __m128 {
    _mm_load1_ps(p)
}
/// movaps
#[inline]
pub unsafe fn _mm_load_ps(p: *const f32) -> __m128 {
    let p = p as *mut __m128;
    *p
}
/// movups
#[inline]
pub unsafe fn _mm_loadu_ps(p: *const f32) -> __m128 {
    let mut a: __m128 = __m128::new(0., 0., 0., 0.);
    let p = p as *const u8;
    let pa = &mut a as *mut __m128 as *mut u8;
    copy_nonoverlapping(p, pa, 16);
    a
}
#[inline]
pub unsafe fn _mm_loadr_ps(p: *const f32) -> __m128 {
    let a = _mm_load_ps(p);
    simd_shuffle4(a, a, [3, 2, 1, 0])
}
#[inline]
pub unsafe fn _mm_undefined_ps() -> __m128 {
    uninitialized()
}
#[inline]
pub fn _mm_set_ss(w: f32) -> __m128 {
    __m128::new(w, 0., 0., 0.)
}
#[inline]
pub fn _mm_set1_ps(w: f32) -> __m128 {
    __m128::new(w, w, w, w)
}
#[inline]
pub fn _mm_set_ps1(w: f32) -> __m128 {
    _mm_set1_ps(w)
}
#[inline]
pub fn _mm_set_ps(z: f32, y: f32, x: f32, w: f32) -> __m128 {
    __m128::new(w, x, y, z)
}
#[inline]
pub fn _mm_setr_ps(z: f32, y: f32, x: f32, w: f32) -> __m128 {
    __m128::new(z, y, x, w)
}
#[inline]
pub fn _mm_setzero_ps() -> __m128 {
    __m128::new(0., 0., 0., 0.)
}
/// movhps
#[inline]
pub unsafe fn _mm_storeh_pi(p: *mut __m64, a: __m128) {
    // Cast to u8 to avoid assumptions about alignment.
    // FIXME: For some reason, this comes out as two instructions;
    // write this differently?
    let p = p as *mut u8;
    let pa = &a as *const __m128 as *const u8;
    copy_nonoverlapping(pa.offset(8), p, 8)
}
/// movlps
#[inline]
pub unsafe fn _mm_storel_pi(p: *mut __m64, a: __m128) {
    // Cast to u8 to avoid assumptions about alignment.
    let p = p as *mut u8;
    let pa = &a as *const __m128 as *const u8;
    copy_nonoverlapping(pa, p, 8)
}
/// movss
#[inline]
pub unsafe fn _mm_store_ss(p: *mut f32, a: __m128) {
    // Cast to u8 to avoid assumptions about alignment.
    let p = p as *mut u8;
    let pa = &a as *const __m128 as *const u8;
    copy_nonoverlapping(pa, p, 4)
}
/// movups
#[inline]
pub unsafe fn _mm_storeu_ps(p: *mut f32, a: __m128) {
    // Cast to u8 to avoid assumptions about alignment.
    let p = p as *mut u8;
    let pa = &a as *const __m128 as *const u8;
    copy_nonoverlapping(pa, p, 16)
}
/// movaps
#[inline]
pub unsafe fn _mm_store_ps(p: *mut f32, a: __m128) {
    let p = p as *mut __m128;
    *p = a;
}
#[inline]
pub unsafe fn _mm_store1_ps(p: *mut f32, a: __m128) {
    let elem = a.extract(0);
    _mm_store_ps(p, __m128::new(elem, elem, elem, elem));
}
#[inline]
pub unsafe fn _mm_store_ps1(p: *mut f32, a: __m128) {
    _mm_store1_ps(p, a);
}
#[inline]
pub unsafe fn _mm_storer_ps(p: *mut f32, a: __m128) {
    _mm_store_ps(p, __m128::new(a.extract(3), a.extract(2), a.extract(1), a.extract(0)));
}
/// sfence
#[inline]
pub fn _mm_sfence() {
    unsafe { sse_sfence() }
}
/// stmxcsr
#[inline]
pub fn _mm_getcsr() -> u32 {
    unsafe {
        let mut result : u32 = uninitialized();
        sse_stmxcsr(&mut result as *mut u32 as *mut i8);
        result
    }
}
/// ldmxcsr
#[inline]
pub unsafe fn _mm_setcsr(i: u32) {
    sse_ldmxcsr(&i as *const u32 as *mut i8);
}
/// unpckhps
#[inline]
pub fn _mm_unpackhi_ps(a: __m128, b: __m128) -> __m128 {
    __m128::new(a.extract(2), b.extract(2), a.extract(3), b.extract(3))
}
/// unpcklps
#[inline]
pub fn _mm_unpacklo_ps(a: __m128, b: __m128) -> __m128 {
    __m128::new(a.extract(0), b.extract(0), a.extract(1), b.extract(1))
}
/// movss
#[inline]
pub fn _mm_move_ss(a: __m128, b: __m128) -> __m128 {
    a.replace(0, b.extract(0))
}
/// movhlps
#[inline]
pub fn _mm_movehl_ps(a: __m128, b: __m128) -> __m128 {
    // (This actually generates unpckhpd if SSE2 is available.)
    __m128::new(b.extract(2), b.extract(3), a.extract(2), a.extract(3))
}
/// movlhps
#[inline]
pub fn _mm_movelh_ps(a: __m128, b: __m128) -> __m128 {
    // (This actually generates unpcklpd if SSE2 is available.)
    __m128::new(a.extract(0), a.extract(1), b.extract(0), b.extract(1))
}
/// movmskps
#[inline]
pub fn _mm_movemask_ps(a: __m128) -> i32 {
    unsafe { sse_movmsk_ps(a) }
}
/// shufps
#[inline]
pub fn _mm_shuffle_ps(a: __m128, b: __m128, imm8: u32) -> __m128 {
    // FIXME: This is extremely ugly, but I don't know what the alternative is.
    let a1 = (imm8 >> 0) & 3;
    let a2 = (imm8 >> 2) & 3;
    let b1 = (imm8 >> 4) & 3;
    let b2 = (imm8 >> 6) & 3;
    __m128::new(a.extract(a1), a.extract(a2), b.extract(b1), b.extract(b2))
}
/// prefetchnta, prefetcht0, prefetcht1, prefetcht2
#[inline]
pub fn _mm_prefetch(p: *const i8, i: i32) {
    unsafe {
        match i {
            _MM_HINT_T0 => prefetch(p, 0, 3, 1),
            _MM_HINT_T1 => prefetch(p, 0, 2, 1),
            _MM_HINT_T2 => prefetch(p, 0, 1, 1),
            _ => prefetch(p, 0, 0, 1),
        }
    }
}
#[inline]
pub fn _MM_SHUFFLE(z: u32, y: u32, x: u32, w: u32) -> u32 {
    (z << 6) | (y << 4) | (x << 2) | w
}

/*
 TODO
unsigned int _MM_GET_EXCEPTION_MASK ()
unsigned int _MM_GET_EXCEPTION_STATE ()
unsigned int _MM_GET_FLUSH_ZERO_MODE ()
unsigned int _MM_GET_ROUNDING_MODE ()
void _MM_SET_EXCEPTION_MASK (unsigned int a)
void _MM_SET_EXCEPTION_STATE (unsigned int a)
void _MM_SET_FLUSH_ZERO_MODE (unsigned int a)
void _MM_SET_ROUNDING_MODE (unsigned int a)
_MM_TRANSPOSE4_PS (__m128 row0, __m128 row1, __m128 row2, __m128 row3)
*/

pub const _MM_EXCEPT_INVALID: u32 = 0x0001;
pub const _MM_EXCEPT_DENORM: u32 = 0x0002;
pub const _MM_EXCEPT_DIV_ZERO: u32 = 0x0004;
pub const _MM_EXCEPT_OVERFLOW: u32 = 0x0008;
pub const _MM_EXCEPT_UNDERFLOW: u32 = 0x0010;
pub const _MM_EXCEPT_INEXACT: u32 = 0x0020;
pub const _MM_EXCEPT_MASK: u32 = 0x003f;
pub const _MM_MASK_INVALID: u32 = 0x0080;
pub const _MM_MASK_DENORM: u32 = 0x0100;
pub const _MM_MASK_DIV_ZERO: u32 = 0x0200;
pub const _MM_MASK_OVERFLOW: u32 = 0x0400;
pub const _MM_MASK_UNDERFLOW: u32 = 0x0800;
pub const _MM_MASK_INEXACT: u32 = 0x1000;
pub const _MM_MASK_MASK: u32 = 0x1f80;
pub const _MM_ROUND_NEAREST: u32 = 0x0000;
pub const _MM_ROUND_DOWN: u32 = 0x2000;
pub const _MM_ROUND_UP: u32 = 0x4000;
pub const _MM_ROUND_TOWARD_ZERO: u32 = 0x6000;
pub const _MM_ROUND_MASK: u32 = 0x6000;
pub const _MM_FLUSH_ZERO_MASK: u32 = 0x8000;
pub const _MM_FLUSH_ZERO_ON: u32 = 0x8000;
pub const _MM_FLUSH_ZERO_OFF: u32 = 0x0000;

pub const _MM_HINT_T0 : i32 = 3;
pub const _MM_HINT_T1 : i32 = 2;
pub const _MM_HINT_T2 : i32 = 1;
pub const _MM_HINT_NTA : i32 = 0;

/// The methods in this module can't be implemented because Rust doesn't
/// expose nontemporal loads.
pub mod unimplemented_nontemporal {
    use __m128;
    /// movntps
    ///
    /// Not yet implemented.
    pub fn _mm_stream_ps(p: *mut f32, a: __m128) {
        unimplemented!()
    }
}

/// The methods in this module can't be implemented because Rust doesn't
/// expose the LLVM x86_mmx type.
pub mod unimplemented_mmx {
    use __m64;
    use __m128;

    /// cvtps2pi
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_cvtps_pi32(a: __m128) -> __m64 {
        unimplemented!()
    }
    /// cvtps2pi
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_cvt_ps2pi(a: __m128) -> __m64 {
        _mm_cvtps_pi32(a)
    }
    /// cvttps2pi
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_cvttps_pi32(a: __m128) -> __m64 {
        unimplemented!()
    }
    /// cvttps2pi
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_cvtt_ps2pi(a: __m128) -> __m64 {
        _mm_cvttps_pi32(a)
    }
    /// cvtpi2ps
    ///
    /// Not yet implemented.
    pub fn _mm_cvtpi32_ps(a: __m128, b: __m64) -> __m128 {
        unimplemented!()
    }
    /// cvtpi2ps
    ///
    /// Not yet implemented.
    pub fn _mm_cvt_pi2ps(a: __m128, b: __m64) -> __m128 {
        _mm_cvtpi32_ps(a, b)
    }
    /// movntq
    ///
    /// Not yet implemented.
    pub fn _mm_stream_pi(p: *mut __m64, a: __m64) {
        unimplemented!()
    }
    /// pmaxsw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_max_pi16(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// pmaxub
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_max_pu8(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// pminsw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_min_pi16(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// pminub
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_min_pu8(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// pmovmskb
    ///
    /// Not yet implemented.
    pub fn _mm_movemask_pi8(a: __m64) -> i32 {
        unimplemented!()
    }
    /// pmulhuw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_mulhi_pu16(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// maskmovq
    ///
    /// Not yet implemented.
    pub fn _mm_maskmove_si64(d: __m64, n: __m64, p: *mut i8) {
        unimplemented!()
    }
    /// pavgb
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_avg_pu8(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// pavgw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_avg_pu16(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// psadbw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_sad_pu8(a: __m64, b: __m64) -> __m64 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub fn _mm_cvtpi16_ps(a: __m64) -> __m128 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub fn _mm_cvtpu16_ps(a: __m64) -> __m128 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub fn _mm_cvtpi8_ps(a: __m64) -> __m128 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub fn _mm_cvtpu8_ps(a: __m64) -> __m128 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub fn _mm_cvtpi32x2_ps(a: __m64, b: __m64) -> __m128 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub unsafe fn _mm_cvtps_pi16(a: __m128) -> __m64 {
        unimplemented!()
    }
    /// Not yet implemented.
    pub unsafe fn _mm_cvtps_pi8(a: __m128) -> __m64 {
        unimplemented!()
    }
    /// pextrw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_extract_pi16(a: __m64, imm8: i32) -> i32 {
        unimplemented!()
    }
    /// pinsrw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_insert_pi16(a: __m64, i: i32, imm8: i32) -> __m64 {
        unimplemented!()
    }
    /// pshufw
    ///
    /// Not yet implemented.
    pub unsafe fn _mm_shuffle_pi16(a: __m64, imm8: i32) -> __m64 {
        unimplemented!()
    }
    /// maskmovq
    ///
    /// Not yet implemented.
    pub unsafe fn _m_maskmovq(a: __m64, mask: __m64, mem_addr: *mut i8) {
        _mm_maskmove_si64(a, mask, mem_addr);
    }
    /// pavgb
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pavgb(a: __m64, b: __m64) -> __m64 {
        _mm_avg_pu8(a, b)
    }
    /// pavgw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pavgw(a: __m64, b: __m64) -> __m64 {
        _mm_avg_pu16(a, b)
    }
    /// pextrw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pextrw(a: __m64, imm8: i32) -> i32 {
        _mm_extract_pi16(a, imm8)
    }
    /// pinsrw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pinsrw(a: __m64, i: i32, imm8: i32) -> __m64 {
        _mm_insert_pi16(a, i, imm8)
    }
    /// pmaxsw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pmaxsw(a: __m64, b: __m64) -> __m64 {
        _mm_max_pi16(a, b)
    }
    /// pmaxub
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pmaxub(a: __m64, b: __m64) -> __m64 {
        _mm_max_pu8(a, b)
    }
    /// pminsw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pminsw(a: __m64, b: __m64) -> __m64 {
        _mm_min_pi16(a, b)
    }
    /// pminub
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pminub(a: __m64, b: __m64) -> __m64 {
        _mm_min_pu8(a, b)
    }
    /// pmovmskb
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pmovmskb(a: __m64) -> i32 {
        _mm_movemask_pi8(a)
    }
    /// pmulhuw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pmulhuw(a: __m64, b: __m64) -> __m64 {
        _mm_mulhi_pu16(a, b)
    }
    /// psadbw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_psadbw(a: __m64, b: __m64) -> __m64 {
        _mm_sad_pu8(a, b)
    }
    /// pshufw
    ///
    /// Not yet implemented.
    pub unsafe fn _m_pshufw(a: __m64, imm8: i32) -> __m64 {
        _mm_shuffle_pi16(a, imm8)
    }
}