1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
use crate::error::*;
use crate::image::Image;
use crate::pal::PalIndex;
use crate::pal::ARGBF;
use crate::pal::MAX_COLORS;
use crate::pal::{f_pixel, gamma_lut, RGBA};
use crate::quant::QuantizationResult;
use crate::rows::temp_buf;
use crate::rows::DynamicRows;
use crate::Attributes;
use rgb::ComponentSlice;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::hash::Hash;

/// Number of pixels in a given color for [`Histogram::add_colors()`]
///
/// Used for building a histogram manually. Otherwise see [`Histogram::add_image()`]
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct HistogramEntry {
    /// The color
    pub color: RGBA,
    /// Importance of the color (e.g. number of occurrences)
    pub count: u32,
}

/// Generate one shared palette for multiple images
///
/// If you're converting one image at a time, see [`Attributes::new_image`] instead
pub struct Histogram {
    gamma: Option<f64>,
    fixed_colors: FixedColorsSet,

    /// The key is the RGBA cast to u32
    /// The value is a (boosted) count or 0 if it's a fixed color
    hashmap: HashMap<u32, (u32, RGBA), U32Hasher>,

    posterize_bits: u8,
    max_histogram_entries: u32,
}

pub(crate) type FixedColorsSet = HashSet<HashColor, U32Hasher>;

#[derive(Clone)]
pub(crate) struct HistItem {
    pub color: f_pixel,
    pub adjusted_weight: f32,
    pub perceptual_weight: f32,
    /// temporary in median cut
    pub mc_color_weight: f32,
    pub tmp: HistSortTmp,
}

impl HistItem {
    // Safety: just an int, and it's been initialized when constructing the object
    #[inline(always)]
    pub fn mc_sort_value(&self) -> u32 {
        unsafe { self.tmp.mc_sort_value }
    }

    // The u32 has been initialized when constructing the object, and u8/u16 is smaller than that
    #[inline(always)]
    pub fn likely_palette_index(&self) -> PalIndex {
        assert!(std::mem::size_of::<PalIndex>() <= std::mem::size_of::<u32>());
        unsafe { self.tmp.likely_palette_index }
    }
}

impl fmt::Debug for HistItem {
    #[cold]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("HistItem")
            .field("color", &self.color)
            .field("adjusted_weight", &self.adjusted_weight)
            .field("perceptual_weight", &self.perceptual_weight)
            .field("color_weight", &self.mc_color_weight)
            .finish()
    }
}

#[repr(C)]
#[derive(Clone, Copy)]
pub union HistSortTmp {
    pub mc_sort_value: u32,
    pub likely_palette_index: PalIndex,
}

impl Histogram {
    /// Creates histogram object that will be used to collect color statistics from multiple images.
    ///
    /// All options should be set on `attr` before the histogram object is created. Options changed later may not have effect.
    #[inline]
    #[must_use]
    pub fn new(attr: &Attributes) -> Self {
        Self {
            posterize_bits: attr.posterize_bits(),
            max_histogram_entries: attr.max_histogram_entries,
            fixed_colors: HashSet::with_hasher(U32Hasher(0)),
            hashmap: HashMap::with_hasher(U32Hasher(0)),
            gamma: None,
        }
    }

    /// "Learns" colors from the image, which will be later used to generate the palette.
    ///
    /// Fixed colors added to the image are also added to the histogram. If the total number of fixed colors exceeds 256,
    /// this function will fail with `LIQ_BUFFER_TOO_SMALL`.
    #[inline(never)]
    pub fn add_image(&mut self, attr: &Attributes, image: &mut Image) -> Result<(), Error> {
        let width = image.width();
        let height = image.height();
        if image.importance_map.is_none() && attr.use_contrast_maps {
            image.contrast_maps()?;
        }

        self.gamma = image.gamma();

        if !image.fixed_colors.is_empty() {
            self.fixed_colors.extend(image.fixed_colors.iter().copied().enumerate().map(|(idx, rgba)| {
               HashColor { rgba, index: idx as _ }
            }));
        }

        if attr.progress(f32::from(attr.progress_stage1) * 0.40) {
            return Err(Aborted); // bow can free the RGBA source if copy has been made in f_pixels
        }

        let posterize_bits = attr.posterize_bits();
        let surface_area = height * width;
        let estimated_colors = (surface_area / (posterize_bits as usize + if surface_area > 512 * 512 { 7 } else { 5 })).min(250_000);
        self.reserve(estimated_colors);

        self.add_pixel_rows(&image.px, image.importance_map.as_deref(), posterize_bits)?;

        Ok(())
    }

    /// Alternative to `add_image()`. Intead of counting colors in an image, it directly takes an array of colors and their counts.
    ///
    /// This function is only useful if you already have a histogram of the image from another source.
    ///
    /// The gamma may be 0 to mean sRGB. All calls to `add_colors` and `add_fixed_color` should use the same gamma value.
    #[inline(never)]
    pub fn add_colors(&mut self, entries: &[HistogramEntry], gamma: f64) -> Result<(), Error> {
        if entries.is_empty() || entries.len() > 1 << 24 {
            return Err(ValueOutOfRange);
        }

        if !(0. ..1.).contains(&gamma) {
            return Err(ValueOutOfRange);
        }

        if self.gamma.is_none() && gamma > 0. {
            self.gamma = Some(gamma);
        }

        self.reserve(entries.len());

        for e in entries {
            self.add_color(e.color, e.count);
        }

        Ok(())
    }

    /// Add a color guaranteed to be in the final palette
    ///
    /// The gamma may be 0 to mean sRGB. All calls to `add_colors` and `add_fixed_color` should use the same gamma value.
    pub fn add_fixed_color(&mut self, rgba: RGBA, gamma: f64) -> Result<(), Error> {
        if self.fixed_colors.len() >= MAX_COLORS {
            return Err(Unsupported);
        }

        if self.gamma.is_none() && gamma > 0. {
            self.gamma = Some(gamma);
        }

        let idx = self.fixed_colors.len();
        self.fixed_colors.insert(HashColor { rgba, index: idx as _ });

        Ok(())
    }

    /// Generate palette for all images/colors added to the histogram.
    ///
    /// Palette generated using this function won't be improved during remapping.
    /// If you're generating palette for only one image, it's better not to use the `Histogram`.
    #[inline]
    pub fn quantize(&mut self, attr: &Attributes) -> Result<QuantizationResult, Error> {
        self.quantize_internal(attr, true)
    }

    #[inline(never)]
    pub(crate) fn quantize_internal(&mut self, attr: &Attributes, freeze_result_colors: bool) -> Result<QuantizationResult, Error> {
        if self.hashmap.is_empty() && self.fixed_colors.is_empty() {
            return Err(Unsupported);
        }

        if attr.progress(0.) { return Err(Aborted); }
        if attr.progress(f32::from(attr.progress_stage1) * 0.89) {
            return Err(Aborted);
        }

        let gamma = self.gamma.unwrap_or(0.45455);
        let hist = self.finalize_builder(gamma).map_err(|_| OutOfMemory)?;

        attr.verbose_print(format!("  made histogram...{} colors found", hist.items.len()));

        QuantizationResult::new(attr, hist, freeze_result_colors, gamma)
    }

    #[inline(always)]
    fn add_color(&mut self, rgba: RGBA, boost: u32) {
        if boost == 0 {
            return;
        }

        let px_int = if rgba.a != 0 {
            self.posterize_mask() & unsafe { RGBAInt { rgba }.int }
        } else { 0 };

        self.hashmap.entry(px_int)
            // it can overflow on images over 2^24 pixels large
            .and_modify(move |e| e.0 = e.0.saturating_add(boost))
            .or_insert((boost, rgba));
    }

    fn reserve(&mut self, entries: usize) {
        let new_entries = entries.saturating_sub(self.hashmap.len() / 3); // assume some will be dupes, if called multiple times
        self.hashmap.reserve(new_entries);
    }

    #[inline(always)]
    fn posterize_mask(&self) -> u32 {
        let channel_mask = 255 << self.posterize_bits;
        u32::from_ne_bytes([channel_mask, channel_mask, channel_mask, channel_mask])
    }

    /// optionallys et
    fn init_posterize_bits(&mut self, posterize_bits: u8) {
        if self.posterize_bits >= posterize_bits {
            return;
        }
        self.posterize_bits = posterize_bits;
        let new_posterize_mask = self.posterize_mask();

        let new_size = (self.hashmap.len()/3).max(self.hashmap.capacity()/5);
        let old_hashmap = std::mem::replace(&mut self.hashmap, HashMap::with_capacity_and_hasher(new_size, U32Hasher(0)));
        self.hashmap.extend(old_hashmap.into_iter().map(move |(k, v)| {
            (k & new_posterize_mask, v)
        }));
    }

    pub(crate) fn add_pixel_rows(&mut self, image: &DynamicRows<'_, '_>, importance_map: Option<&[u8]>, posterize_bits: u8) -> Result<(), Error> {
        let width = image.width as usize;
        let height = image.height as usize;

        debug_assert!(importance_map.map_or(true, |m| m.len() == image.width() * image.height()));

        let mut importance_map = importance_map.unwrap_or(&[]).chunks_exact(width).fuse();
        let image_iter = image.rgba_rows_iter()?;

        let mut temp_row = temp_buf(width)?;
        for row in 0..height {
            let pixels_row = &image_iter.row_rgba(&mut temp_row, row)[..width];
            let importance_map = importance_map.next().map(move |m| &m[..width]).unwrap_or(&[]);
            for (col, px) in pixels_row.iter().copied().enumerate() {
                let boost = importance_map.get(col).copied().unwrap_or(255);
                self.add_color(px, boost.into());
            }
        }
        self.init_posterize_bits(posterize_bits);

        if self.hashmap.len() > self.max_histogram_entries as usize && self.posterize_bits < 3 {
            self.init_posterize_bits(self.posterize_bits + 1);
        }
        Ok(())
    }

    pub(crate) fn finalize_builder(&mut self, gamma: f64) -> Result<HistogramInternal, Error> {
        debug_assert!(gamma > 0.);

        // Fixed colors will be put into normal hashmap, but with very high weight,
        // and temporarily 0 means this fixed max weight
        for &HashColor { rgba, .. } in &self.fixed_colors {
            let px_int = if rgba.a != 0 {
                unsafe { RGBAInt { rgba }.int }
            } else { 0 };

            self.hashmap.insert(px_int, (0, rgba));
        }

        let mut temp = Vec::new();
        temp.try_reserve_exact(self.hashmap.len())?;

        let mut counts = [0; LIQ_MAXCLUSTER];
        temp.extend(self.hashmap.values().map(|&(boost, color)| {
            let cluster_index = ((color.r >> 7) << 3) | ((color.g >> 7) << 2) | ((color.b >> 7) << 1) | (color.a >> 7);
            counts[cluster_index as usize] += 1;

            // fixed colors result in weight == 0.
            let weight = boost as f32;
            TempHistItem { color, weight, cluster_index }
        }));

        let mut clusters = [Cluster { begin: 0, end: 0 }; LIQ_MAXCLUSTER];
        let mut next_begin = 0;
        for (cluster, count) in clusters.iter_mut().zip(counts) {
            cluster.begin = next_begin;
            cluster.end = next_begin;
            next_begin += count;
        }

        let mut items = Vec::new();
        items.try_reserve_exact(temp.len())?;
        items.resize(temp.len(), HistItem {
            color: if cfg!(debug_assertions) { f_pixel( ARGBF { r:f32::NAN, g:f32::NAN, b:f32::NAN, a:f32::NAN } ) } else { f_pixel::default() },
            adjusted_weight: if cfg!(debug_assertions) { f32::NAN } else { 0. },
            perceptual_weight: if cfg!(debug_assertions) { f32::NAN } else { 0. },
            mc_color_weight: if cfg!(debug_assertions) { f32::NAN } else { 0. },
            tmp: HistSortTmp { mc_sort_value: if cfg!(debug_assertions) { !0 } else { 0 } },
        });
        let mut items = items.into_boxed_slice();

        // Limit perceptual weight to 1/10th of the image surface area to prevent
        // a single color from dominating all others.
        let max_perceptual_weight = 0.1 * (temp.iter().map(|t| f64::from(t.weight)).sum::<f64>() / 256.) as f32;

        let lut = gamma_lut(gamma);
        let mut total_perceptual_weight = 0.;
        for temp_item in temp {
            let cluster = &mut clusters[temp_item.cluster_index as usize];
            let next_index = cluster.end as usize;
            cluster.end += 1;

            // weight == 0 means it's a fixed color
            let weight = if temp_item.weight > 0. {
                (temp_item.weight * (1. / 256.)).min(max_perceptual_weight)
            } else {
                max_perceptual_weight * 10.
            };
            total_perceptual_weight += f64::from(weight);

            items[next_index].color = f_pixel::from_rgba(&lut, temp_item.color);
            items[next_index].perceptual_weight = weight;
            items[next_index].adjusted_weight = weight;
        }

        let mut fixed_colors: Vec<_> = self.fixed_colors.iter().collect();
        fixed_colors.sort_by_key(|c| c.index); // original order
        let fixed_colors = fixed_colors.iter().map(|c| f_pixel::from_rgba(&lut, c.rgba)).collect();

        Ok(HistogramInternal { items, total_perceptual_weight, clusters, fixed_colors })
    }
}

#[derive(Copy, Clone)]
struct TempHistItem {
    color: RGBA,
    weight: f32,
    cluster_index: u8,
}

#[repr(C)]
union RGBAInt {
    rgba: RGBA,
    int: u32,
}

/// Clusters form initial boxes for quantization, to ensure extreme colors are better represented
pub const LIQ_MAXCLUSTER: usize = 16;

pub(crate) struct HistogramInternal {
    pub items: Box<[HistItem]>,
    pub total_perceptual_weight: f64,
    pub clusters: [Cluster; LIQ_MAXCLUSTER],
    pub fixed_colors: Box<[f_pixel]>,
}

// Pre-grouped colors
#[derive(Copy, Clone, Debug)]
pub(crate) struct Cluster {
    pub begin: u32,
    pub end: u32,
}

// Simple deterministic hasher for the color hashmap
impl std::hash::BuildHasher for U32Hasher {
    type Hasher = Self;
    #[inline(always)]
    fn build_hasher(&self) -> Self {
        Self(0)
    }
}

pub(crate) struct U32Hasher(pub u32);
impl std::hash::Hasher for U32Hasher {
    // magic constant from fxhash. For a single 32-bit key that's all it needs!
    #[inline(always)]
    fn finish(&self) -> u64 { u64::from(self.0).wrapping_mul(0x517cc1b727220a95) }
    #[inline(always)]
    fn write_u32(&mut self, i: u32) { self.0 = i; }

    fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
    fn write_u8(&mut self, _i: u8) { unimplemented!() }
    fn write_u16(&mut self, _i: u16) { unimplemented!() }
    fn write_u64(&mut self, _i: u64) { unimplemented!() }
    fn write_u128(&mut self, _i: u128) { unimplemented!() }
    fn write_usize(&mut self, _i: usize) { unimplemented!() }
    fn write_i8(&mut self, _i: i8) { unimplemented!() }
    fn write_i16(&mut self, _i: i16) { unimplemented!() }
    fn write_i32(&mut self, _i: i32) { unimplemented!() }
    fn write_i64(&mut self, _i: i64) { unimplemented!() }
    fn write_i128(&mut self, _i: i128) { unimplemented!() }
    fn write_isize(&mut self, _i: isize) { unimplemented!() }
}

/// ignores the index
#[derive(PartialEq, Debug)]
pub(crate) struct HashColor { pub rgba: RGBA, pub index: PalIndex }

#[allow(clippy::derived_hash_with_manual_eq)]
impl Hash for HashColor {
    #[inline]
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        u32::from_ne_bytes(self.rgba.as_slice().try_into().unwrap()).hash(state);
    }
}

impl Eq for HashColor {
    fn assert_receiver_is_total_eq(&self) {}
}